CS 0449 – gdb
This is a walkthrough to help you examine a sample program and figure out the password the program expects. This will help establish the basic usage of the gdb debugger, which lets you inspect programs as they are running!
Walkthrough

Log onto thoth.cs.pitt.edu and do your work on that machine. Use the provided command from the course website to download the puzzle executable we will be working with in the worksheet.
“puzzle” is the executable that you are attempting to solve. Once you have downloaded it to your machine and it is in the current directory, let’s load it into the debugger:

gdb puzzle
A good place to start is to break at main, since we can assume here that this is a rather normal C program: (b – sets a Breakpoint)
(gdb) b main

Breakpoint 1 at 0x11a6

And let’s run the program until main is executed: (r – Runs the executable) It will stop here because of our established breakpoint. (NOTE: the addresses may be different than the ones you see here.)
(gdb) r

Starting program: /afs/pitt.edu/home/d/w/dww9/puzzle

Breakpoint 1, 0x00005555555551a6 in main ()

(gdb) |

At this point, we can stop and disassemble the code in main to get an idea of what is going on. I’ve highlighted the function calls in bold because they are often a good place to start looking. They give us great information about the high-level behavior.

(gdb) disas

Dump of assembler code for function main:

 0x00005555555551a2 <+0>: push %rbp

 0x00005555555551a3 <+1>: mov %rsp,%rbp

=> 0x00005555555551a6 <+4>: sub $0x10,%rsp

 0x00005555555551aa <+8>: lea 0xe53(%rip),%rdi

 0x00005555555551b1 <+15>: mov $0x0,%eax

 0x00005555555551b6 <+20>: callq 0x555555555050 <printf@plt>
 0x00005555555551bb <+25>: mov 0x2e9e(%rip),%rax

 0x00005555555551c2 <+32>: mov %rax,%rdx

 0x00005555555551c5 <+35>: mov $0x64,%esi

 0x00005555555551ca <+40>: lea 0x2eaf(%rip),%rdi

 0x00005555555551d1 <+47>: callq 0x555555555060 <fgets@plt>
 0x00005555555551d6 <+52>: lea 0x2ea3(%rip),%rdi
 0x00005555555551dd <+59>: callq 0x555555555179 <chomp>
 0x00005555555551e2 <+64>: lea 0x2e97(%rip),%rax

 0x00005555555551e9 <+71>: mov %rax,-0x8(%rbp)

 0x00005555555551ed <+75>: jmp 0x555555555206 <main+100>

 0x00005555555551ef <+77>: mov -0x8(%rbp),%rax

 0x00005555555551f3 <+81>: movzbl (%rax),%eax

 0x00005555555551f6 <+84>: add $0x1,%eax

 0x00005555555551f9 <+87>: mov %eax,%edx

 0x00005555555551fb <+89>: mov -0x8(%rbp),%rax

 0x00005555555551ff <+93>: mov %dl,(%rax)

 0x0000555555555201 <+95>: addq $0x1,-0x8(%rbp)

 0x0000555555555206 <+100>: mov -0x8(%rbp),%rax

 0x000055555555520a <+104>: movzbl (%rax),%eax

 0x000055555555520d <+107>: test %al,%al

 0x000055555555520f <+109>: jne 0x5555555551ef <main+77>

 0x0000555555555211 <+111>: lea 0x2e68(%rip),%rsi

 0x0000555555555218 <+118>: lea 0xdfd(%rip),%rdi

 0x000055555555521f <+125>: callq 0x555555555070 <strcmp@plt>
 0x0000555555555224 <+130>: test %eax,%eax

 0x0000555555555226 <+132>: jne 0x555555555236 <main+148>

 0x0000555555555228 <+134>: lea 0xdf4(%rip),%rdi

 0x000055555555522f <+141>: callq 0x555555555030 <puts@plt>
 0x0000555555555234 <+146>: jmp 0x555555555242 <main+160>

 0x0000555555555236 <+148>: lea 0xdf5(%rip),%rdi

 0x000055555555523d <+155>: callq 0x555555555030 <puts@plt>
 0x0000555555555242 <+160>: mov $0x0,%eax

 0x0000555555555247 <+165>: leaveq

 0x0000555555555248 <+166>: retq

This is the output of the “disas” (disassemble) command that shows you the assembly code at the current position of the program as it is being executed.

We see fgets, an indication of where we are doing some input. We see a couple printfs that will do some output, we have chomp, a function that is not part of the standard library and is a mystery, and finally, we have a strcmp.

While it’s tempting to go look at chomp, the fact we see a strcmp seems immediately more promising, since this might be doing the test against the solution. We know from our class discussions about the C ABI that the two pointer arguments strcmp expects will be set up by the code immediately before the call by using the conventional registers RDI and RSI, so let’s put a breakpoint just before the call happens. (See the underlined section in the assembly code in the previous section for where this address came from. You can also say: b *(main + 125))

(gdb) b *0x000055555555521f
Breakpoint 2 at 0x000055555555521f
When we want to put a breakpoint at an arbitrary address, we need to use a star prefixed to it. Let’s continue (c – Continues execution) running the program until we hit this second breakpoint.

(gdb) c

Continuing.

something
Along the way it’s just going to pause, this is the fgets waiting for you to enter something. So let’s enter “something.” Now, breakpoint 2 will be hit, and we can look back at our disassembly listing (either on the prior page or by reissuing the disas command) to see where the data is we’d be interested in.

We see that the contents of RDI are being calculated as an address, and this register is the first argument according to the ABI, so maybe RDI contains one of the string pointers we’re interested in. We can examine the memory location at the address in RDI. Notice that we use the $ here instead of the % to talk about registers. I don’t know why this is inconsistent from the AT&T syntax. (x – eXamine memory)
Also the /s tells the examine command that we want to treat this as a string. You can look in the help for x by typing “help x” in gdb to learn about more formats.

(gdb) x/s $rdi

0x55555555601c: "bcdefg"

That looks promising. It’s certainly not the string we input, maybe it is the solution. Let’s restart the program and try this as the solution. (r – restarts if the program is running)
(gdb) r
The program being debugged has been started already.

Start it from the beginning? (y or n) y
We hit the first and second breakpoints, let’s continue through them, entering in the string we just discovered.

Breakpoint 1, 0x00005555555551a6 in main ()

(gdb) c
Continuing.

Enter in the password: bcdefg
Breakpoint 2, 0x000055555555521f in main ()

(gdb) c
Continuing.

ACCESS DENIED!!
Program exited normally.
Hmm, that wasn’t it. Let’s go back and take a look at the other argument to strcmp.

First let’s disable the breakpoint at main to more easily get to the breakpoint we care about:

(gdb) disable 1

Restart, try entering “bcdefg” again. Now at breakpoint 2, we want to see what is at the address being pointed to by RSI, so let’s use examine. Sometimes x/s will get confused, so we can always tell it that RSI contains a char pointer by doing a cast. In general, gdb will accept C syntax in terms of variables, arrays, and memory references. It will even accept many C-style expressions.

Breakpoint 2, 0x000055555555521f in main ()

(gdb) x/s (char*)$rsi

0x555555558080 <str>: "cdefgh"

Hmm, we didn’t enter “cdefgh” we entered “bcdefg” – the program must have altered the string somehow.

Your turn!

Figure out what happened to the input string, and discover the string you need to enter in order to unlock the program.

