
Introduction

Spring 2019/2020

wilkie
(with content borrowed from Vinicius Petrucci)

CS/COE 0449
Introduction to

Systems Software

1

Syllabus / Administrivia
I’m obligated to inform you that this is, in fact, a university course.

2CS/COE 0449 – Spring 2019/2020

Welcome!

• Hello!

• I’m wilkie.

• I do research and implementation on Distributed Systems.
▪ My area of research interest is Software Preservation / Repeatability

• I’ve worked on Social Networks, Embedded Systems, Operating
Systems, and Virtualization-based software archival.
▪ I have a full-time job! Bear with me!

• Traditional Computer Scientists think I’m “weird” I think…

CS/COE 0449 – Spring 2019/2020 3

All the fun on Day One

• This is Introduction to Systems Software CS/COE 0449 !!!

• Course website: https://wilkie.github.io/cs449
▪ Schedule

▪ Syllabus

▪ Announcements

▪ LOOK AT THE WEBSITE

• Office: 5413 Sennott Square (across from the mail room)

• Office Hours: TBA

CS/COE 0449 – Spring 2019/2020 4

https://wilkie.github.io/cs449

The Textbooks

• The ANSI C Programming
Language (2nd Edition)
▪ By Brian Kernighan and Dennis Ritchie

▪ Published by Prentice Hall, 1988

▪ Often called the K&R book.

▪ Conventions referred to as K&R style.

▪ Old but trusty!

• Computer Systems:
A Programmer’s Perspective (3rd Edition)
▪ By Randal E. Bryant and David R. O’Hallaron

▪ Published by Pearson, 2016

CS/COE 0449 – Spring 2019/2020 5

Course Layout

• Lectures
▪ Present high-level concepts.

• Recitations
▪ Applied concepts and introduce tools and skills for lab-work.
▪ Clarify lectures and review topics.

• Programming Assignments (Labs)
▪ THE BULK OF YOUR COURSEWORK!
▪ Roughly two weeks per assignment.
▪ Provide deeper dive into some new skill or systems concept.
▪ Programming, measurement, design.

• Exams (Midterm + Final)
▪ Tests comprehension of concepts

CS/COE 0449 – Spring 2019/2020 6

Policies: Lab Assignments

• Collaboration
▪ You MUST WORK ALONE on all lab assignments.

• Submission
▪ Electronic submission using Gradescope (no exception)

▪ Check due dates on the course website

• Thoth Machine
▪ Many labs will assume the use of a specialized machine.

▪ You must use this machine:
•

▪ Use your Pitt username and password.

▪ Talk to your TA if you have any issues. (Do NOT start assignments late!)

CS/COE 0449 – Spring 2019/2020 7

Policies: Late Work

• You get 5 Late Days
▪ Covers most normal setbacks and life and schedule mishaps.

▪ A maximum of 2 Late Days per lab assignment.

▪ That is, assignments 3 days late will always take at least 1 penalty day.

• When you run out…
▪ Late penalty incurs a 15% penalty for each day. (out of original 100%)

▪ An assignment cannot be submitted after the 3rd penalty day.
• Four days late: that’s a 0.

• Emergencies
▪ Major emergencies require haste communication with me and your advisor.

• Start everything early!!
CS/COE 0449 – Spring 2019/2020 8

Policies: Grading

• I don’t keep track of attendance
▪ But you should come to class!

▪ A lot of the concepts are best demonstrated interactively.

• Labs: 50% (Weighted according to effort)

• Midterm: 20%

• Final: 25% (Necessarily Cumulative)

• Homework: 5% (Online problem sets)

• You CANNOT pass without doing the lab assignments.

CS/COE 0449 – Spring 2019/2020 9

Policies: Conduct / Academic Integrity

• Disability Resources / Services:
▪ Contact DRS 412-648-7890; TTY: 412-383-7355

▪ They will email me, and I will listen to what they tell me to do.

• Cheating:
▪ First time: 0 on the lab/assignment/project/exam

▪ Second: Fail the course. Reported. (Applies to all involved.)

▪ Pro-tip: DON’T CHEAT. Start early. Ask appropriate staff for help.

▪ The syllabus online has a more thorough policy.

• Conduct:
▪ Jokes/comments about sex, gender, race, ethnicity, religion, etc are not

tolerated. Includes any online spaces involved.

CS/COE 0449 – Spring 2019/2020 10

More Notes about Cheating

• Again, do not cheat.

• I’m not grading lab assignments, but I still look at your work.

• Ask for help (There are PLENTY of resources)
▪ TAs and my own office hours
▪ Undergraduate Helpdesk (CRC)
▪ We want you to succeed!

• I can definitely tell when someone cheats.
▪ It is very obvious.
▪ Do not do it.
▪ The University is justifiably strict about it.

• Do not publish your code until after the semester (if at all)

CS/COE 0449 – Spring 2019/2020 11

Teaching Pedagogy / Philosophy

• I don’t like teaching from slides or from a book.
▪ You can do that yourself. I prefer interactivity.

• I want to demonstrate practical applications.
▪ Including humanist and artistic applications.

• I want you to walk away with a direction/goal to do something else.
▪ Hopefully, you find something to be inspired by.

• I trust my students that they could learn on their own.
▪ But don’t want them to have to do so.

▪ Ask questions! Challenge concepts! Ask for help!

CS/COE 0449 – Spring 2019/2020 12

Course Overview
If food were knowledge, this would be, like, our restaurant menu.

CS/COE 0449 – Spring 2019/2020 13

Topics (Subject to deviation)

• We’re going to (tentatively) learn SO MUCH fun stuff!

• The C Systems Programming Language
▪ Some x86 Assembly

• Memory Models
▪ Addresses and Pointers
▪ Memory management

• Memory Caches

• Operating Systems
▪ Processes / Signals
▪ Interprocess Communication
▪ The Basics of Virtual Memory
▪ Basic Network Programming

CS/COE 0449 – Spring 2019/2020 14

Skills

• C Programming
▪ Abstractions and coping without them

▪ x86 assembly (ISA) / calling conventions (ABI)

▪ Interactive debugging

▪ Data representation

▪ We gain an appreciation of abstraction (and respecting limitations)

• Systems Design
▪ Learning the “why” for many systems abstractions

▪ Manipulating systems and existing programs

▪ Thinking about how systems might change in the future

▪ We demystify software so as to no longer be a hostage to its design

CS/COE 0449 – Spring 2019/2020 15

What is Systems?

• Systems is broad
▪ A subfield of CS dealing with the interactions between software/hardware.

▪ A layer that provides abstractions and must constantly reevaluate them.
• Operating Systems

• File Systems

• Program Analysis / Debugging Tools

• Intra/Inter System Protocols

▪ A house built from trade-offs in approach…
• Do you build better hardware? Add more memory?

• Or, do you design better software?

▪ And trade-offs in design…
• Do you choose the specialized path?

• Or, do you create a general system?

• Both??

▪ Very opinionated!!!!!!!!!!

CS/COE 0449 – Spring 2019/2020 16

What is Systems??

Looking for guidance by looking at recent research:

• Research Conferences
▪ SOSP/OSDI/EuroSys – OS design, kernel design, virtualization

• Parit models: erasure-coded resilience for prediction serving systems
• Teechain: a secure payment network with asynchronous blockchain access
• Finding semantic bugs in file systems with an extensible fuzzing framework
• File systems unfit as distributed storage backends: lessons from 10 years of Ceph evolution
• Snap: a microkernel approach to host networking

▪ HotOS – Positions on Systems’ future
• Machine Learning Systems are Stuck in a Rut
• I/O Is Faster Than the CPU -- Let's Partition Resources and Eliminate (Most) OS Abstractions
• I'm Not Dead Yet!: The Role of the Operating System in a Kernel-Bypass Era
• Unikernels: The Next Stage of Linux's Dominance
• The Case for I/O-Device-as-a-Service

CS/COE 0449 – Spring 2019/2020 17

• Granular Computing

Why the C Programming Language?

• Because B sucks and D wasn’t invented yet. J/K.

• C was invented in 1972 alongside UNIX to an effort to aid
application development of that system.

• Eventually UNIX itself was rewritten in C cementing C as a systems
language.

• As such, C provides a high-level abstraction of assembly / machine-
code and a low-level abstraction of memory, from the perspective
of the C programmer.
▪ This is important for programming systems code!

▪ Allows full manipulation of memory (to one’s peril, often.)

▪ This, in turn, allows for full manipulation of cpu/hardware.

CS/COE 0449 – Spring 2019/2020 18

Why the C Programming Language??

• Learning C helps you understand Systems.

• Understanding Systems lets you
make them better.
▪ Or break them. ☺

• C reveals the underlying memory
model and execution environment.
▪ Lets you understand any program.

▪ Even if you do not have the original code.

• Failing at C helps you learn…
▪ Because then you debug your program.

▪ And debuggers are very useful tools.
CS/COE 0449 – Spring 2019/2020 19

How people use these skills

• Writing Operating Systems
▪ not the entire thing hopefully

▪ … but parts are generally gonna be C/C-like

▪ Understanding systems means knowing how to
mitigate/improve performance.
• Important that your abstractions don’t hurt performance

because EVERY user application suffers.

• Yet, performance is not the only consideration;
understanding abstractions should help alleviate design
fatigue. https://wilkie.how/posts/kaashoeks-law

▪ Linux and Device Drivers: 10+ million lines of C
• Yikes.

• But, learning C means you can potentially read this and
learn more about / improve / extend Linux.

CS/COE 0449 – Spring 2019/2020 20

https://wilkie.how/posts/kaashoeks-law

How people use these skills

• Debugging Higher-level Programs
▪ Yes, even Python itself crashes!

▪ … and the Python interpreter is written in C …

▪ … and computers don’t understand C …

▪ … so it’s gonna give you an assembly dump.

CS/COE 0449 – Spring 2019/2020 21

How people use these skills

• Creating Art
▪ Real-time art includes not just video games.

▪ There is a lot of fun and skill involved.

▪ Being creative within a constraint has been
very alluring.

▪ The Demoscene is such a community.

CS/COE 0449 – Spring 2019/2020 22

How people use these skills

• Breaking Things for Great Good
▪ Or great bad… I’m not your parents.

▪ Why? Old programs with copy-protection
are still useful.
• Original source code backed up??

What time do you think this is?? Never????

▪ And it is technically legal to reverse-engineer
and/or change them.
• The best kind of legal.
• But I’m not a lawyer and this is not legal advice. lol

▪ You will typically use a “debugger” to break
down a program’s behavior.

▪ And then patch it to do / not-do things.
▪ Generally done professionally by librarians/archivists.

▪ We will also do this!!

CS/COE 0449 – Spring 2019/2020 23

How YOU will use these skills

• All of the above!!

• And, of course, TO HAVE FUN!!

CS/COE 0449 – Spring 2019/2020 24

