
Data

Spring 2019/2020

wilkie
(with content borrowed from Vinicius Petrucci

and Jarrett Billingsley)

CS/COE 0449
Introduction to

Systems SoftwareRepresentation

2

Binary Encoding
Bits, Bytes, and Nybbles

2CS/COE 0449 – Spring 2019/2020

Positional Number Systems

• The numbers we use are written positionally: the position of a digit
within the number has a meaning.

CS/COE 0449 – Spring 2019/2020 3

1,234
1s10s100s1000s

100101102103

1 × 103 +

2 × 102 +

3 × 101 +

4 × 100
=

Most Significant Least Significant

• How many digit symbols do we have in our number system?
▪ 10: 0, 1, 2, 3, 4, 5 ,6 ,7, 8, 9

Ranges of Representation

4

• Suppose we have a 4-digit numeric display.

• What is the smallest number it can show?

• What is the biggest number it can show?

• How many different numbers can it show?
▪ 9999 - 0 + 1 = 10,000

• What power of 10 is 10,000?
▪ 104

• With n digits:
▪ We can represent 10n numbers

▪ The largest number is 10n-1

Numeric Bases

5

• These 10s keep popping up… and for good reason

• We use a base-10 (decimal) numbering system
▪ 10 different digits, and each place is a power of 10

• But we can use (almost) any number as a base!

• The most common bases when dealing with computers are base-2
(binary) and base-16 (hexadecimal)

• When dealing with multiple bases, you can write the base as a
subscript to be explicit about it:

510 = 1012

Let’s make a base-2 system

6

• Given base B,
▪ There are B digit symbols

▪ Each place is worth Bi, starting with i = 0 on the right

▪ Given n digits,
• You can represent Bn numbers

• The largest representable number is Bn – 1

• So how about base-2?

Binary (base-2)

7

• We call a Binary digIT a bit – a single 1 or 0

• When we say an n-bit number, we mean one with n binary digits

27 26 25 24 23 22 21 20

1001 0110
128s 64s 32s 16s 8s 4s 2s 1s

1 × 128 +
0 × 64 +
0 × 32 +
1 × 16 +
0 × 8 +
1 × 4 +
1 × 2 +
0 × 1

= 15010

=
To convert binary to decimal: ignore 0s, add up
place values wherever you see a 1.

MSB LSB

Bits, Bytes, Nybbles, and Words

• A bit is one binary digit, and its unit is lowercase b.

• A byte is an 8-bit value, and its unit is UPPERCASE B.
▪ This is why your 30 megabit (Mb/s) internet connection can only give you at

most 3.75 megabytes (MB) per second!

• A nybble (awww!) is 4 bits – half of a byte.
▪ Corresponds nicely to a single hex digit.

• A word is the "most comfortable size" of number for a CPU.

• When we say "32-bit CPU," we mean its word size is 32 bits.
▪ This means it can, for example, add two 32-bit numbers at once.

• BUT WATCH OUT:
▪ Some things (Windows, x86) use word to mean 16 bits and double word (or

dword) to mean 32 bits.

CS/COE 0449 – Spring 2019/2020 8

Why binary? Whynary?

9

• Because it's the easiest thing to implement!

• Basic arithmetic is a bit easier.

• So, everything on a computer is represented in binary.

▪ everything.

▪ EVERYTHING.

▪ 01000101 01010110 01000101 01010010 01011001 01010100 01001000
01001001 01001110 01000111 00101110
• (“EVERYTHING.”)

Binary Representation

• Computers translate
electrical signals to
either 0 or 1.

• It is relatively easy to
devise electronics
that operate this way.

• In reality, there is no
such thing as “binary”
so we often have to
approximate and
mitigate error.

CS/COE 0449 – Spring 2019/2020 10
Oscilloscope visualization of several digital wires. From @computerfact on Twitter.

Integer Encoding
Casting is Not Just a Witch or Wizard Thing

CS/COE 0449 – Spring 2019/2020 11

Hexadecimal

CS/COE 0449 – Spring 2019/2020 12

• Binary numbers can get really long, quickly.
▪ 3,927,66410 = 11 1011 1110 1110 0111 00002

• But nice "round" numbers in binary look
arbitrary in decimal.
▪ 10000000000000002 = 32,76810

• This is because 10 is not a power of 2!

• We could use base-4, base-8,
base-16, base-32, etc.
▪ Base-4 is not much terser than binary

• e.g. 3,927,66410 = 120 3331 2323 00004

▪ Base-32 would require 32 digit symbols. Yeesh.
• They do, oddly, have their place… but not really in this

context.

▪ Base-8 and base-16 look promising!

Hexadecimal or “hex” (base-16)

13

• Digit symbols after 9 are A-F, meaning 10-15 respectively.

• Usually we call one hexadecimal digit a hex digit. No fancy name :(

167 166 165 164 163 162 161 160

003B EE70
0 × 167 +
0 × 166 +
3 × 165 +

11 × 164 +
14 × 163 +
14 × 162 +

7 × 161 +
0 × 160 =

3,927,66410

=
To convert hex to decimal: use a dang calculator
lol

Binary to Hex (animated)

14

1100 1010 0010 0000 0010 000101100100

4 C A 2 0 2 6 1

0x4CA20261
32-bits! (Not so bad…)

Q: Create a random binary string and practice!

Signed Numbers (sign-magnitude)

• Seems like a good time to think about “negative” values.
▪ These are numbers that have nothing good to say.

• Binary numbers have bits which are either 0 or 1.
▪ Well, yeah…

• So what if we used one bit to designate “positive” or “negative”
▪ Called sign-magnitude encoding:

15

10100010 = -34

00010110 = 22 (normal)

Signed Numbers (problems)

• Waaaaait a second.
▪ What is negative zero???

• This encoding allows two different zeros.
▪ This means we can represent how many different values (8-bit)?

• 28 – 1 (minus the one redundant value) = 255 (-127 … 0 … 127)

• Sign-magnitude is a little naïve… let’s try a different approach…

16

10000000 = -0

00000000 = 0

Signed Numbers (2’s Complement)

• This one, I promise, is juuuuust right.
▪ But it’s a little strange!

• We’ll just make SURE there is only one zero:

• So, we flip the bits… and add one.
▪ Adding one makes sure our -0 is used for -1 instead!

• Sure, it’s a little lopsided, but, hey, we get an extra number.
▪ But, hmm, but -4 doesn’t have a valid positive number.

• That’s the trade-off, but it’s for the best.

17

110

-2

101

-3 0

000
001

+1

010

+2

011

+3

111

-1

100

-40

000
001

+1

010

+2

011

+3

101

-1

110

-2

111

-3

100

Signed Magnitude 2’s Complement

😘

Signed Numbers (2’s Complement)

• Let’s look some examples:

• If the MSB is 1: Flip! Add one!

• Otherwise: Do nothing! It’s the same! 18

11010100=-00101011=-(43+1)=-44

00000000= 00000000= 0

11111111=-00000000=-(0+1) =-1

00100110= 00100110= 38

Signed Numbers (2’s Complement)

• What happens when we add zeros to a positive number:

• What happens when we add ones to a negative number:

19

00100110 = 38

0000000000100110 = ?

10100110 = ?

11111111110100110 =
-00000000001011001 = ?

-90

38

-90

10100110 = ?

-(01011001+1) = ?

-01011010 = ?-90

Can I Get an Extension?

• Sometimes you need to widen a number with fewer bits to
more

• zero extension is easy: put 0s at the beginning.

10012 ➔ to 8 bits ➔ 0000 10012

• But there are also signed numbers… what about those?
▪ The top bit (MSB) of signed numbers determines the sign (+/-)

• sign extension puts copies of the sign bit at the beginning

10012 ➔ to 8 bits ➔ 1111 10012
00102 ➔ to 8 bits ➔ 0000 00102

20Q: What happens when you sign extend the largest unsigned value?

Absolutely Bonkers

CS/COE 0449 – Spring 2019/2020 21Q: How many bits is a Java ? What happened here?

Integer Ranges

• Recall:
▪ The range of an unsigned integer is 0 to 2n – 1

▪ Q: Why do we subtract 1?

• What is the range of a 2’s complement number?
▪ Consider the sign bit, how many negative integers?

▪ Consider, now, the positive integers.

▪ Remember 0.

-2n-1 to 2n-1 – 1

CS/COE 0449 – Spring 2019/2020 22Q: What if you needed a range with far more negatives than positives?

Integers in C

• C allows for variables to be declared as either signed or unsigned.
▪ Remember: “signed” does not mean “negative” just that it can be negative.

• An unsigned integer variable has a range from 0 to 2n – 1

• And signed integers are usually 2’s complement: 2n-1 to 2n-1 – 1
▪ Where “n” is determined by the variable’s size in bits.

• Integer Types: (signed by default, their sizes are arbitrary!!)
▪

▪

▪

▪

• Usually no strong reason to use anything other than (un)signed int.

CS/COE 0449 – Spring 2019/2020 23Q: What is the range of a ?

Integers in C: Limits

• Since sizes of integers are technically arbitrary…
▪ They are usually based on the underlying architecture.

• … C provides standard library constants defining the ranges.
▪ https://pubs.opengroup.org/onlinepubs/009695399/basedefs/limits.h.html

CS/COE 0449 – Spring 2019/2020 24Q: Experiment with using for both. What is the result?

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/limits.h.html

Casting

• C lets you move a value from an unsigned integer variable to a
signed integer variable. (and vice versa)

• However, this is not always valid! Yet, it will do it anyway.
▪ The binary value is the same, its interpretation is not!

• This is called coercion, and this is a relatively simple case of it.

▪ Since it ignores obvious invalid operations this is sometimes referred to as
“weak” typing.

▪ The strong/weak terminology has had very fragile definitions over the years
and are arguably useless in our context. Let’s ignore them.

• Moving values between different types is called casting
▪ Which sounds magical and it sometimes is.

CS/COE 0449 – Spring 2019/2020 25Q: What is true of the result of casting the value -1 to an unsigned type?

