
Data

Spring 2019/2020

wilkie
(with content borrowed from Vinicius Petrucci

and Jarrett Billingsley)

CS/COE 0449
Introduction to

Systems SoftwareRepresentation
II

3



Bit Manipulation
Flippin’ Switches

CS/COE 0449 – Spring 2019/2020 2



What are "bitwise" operations?

• The "numbers" we use on computers aren't really numbers right?

• It's often useful to treat them instead as a pattern of bits.

• Bitwise operations treat a value as a pattern of bits.

3

0 0 0 01



The simplest operation: NOT (logical negation)

• If the light is off, turn it on.

• If the light is on, turn it off.

• We can summarize this in a truth table.

• We write NOT as ~A, or ¬A, or ഥA

• In C, the NOT operation is the “!” operator

4

A Q

0 1

1 0



Applying NOT to a whole bunch of bits

• If we use the not instruction (~ in C), this is what happens:

5

~ 0 0 1 1 1 0 1 0

= 1 1 0 0 0 1 0 1

we did 8 independent NOT operations

That's it.

only 8 bits shown cause 32 bits on a slide is too much



Let's add some switches

• There are two switches in a row connecting the light to the battery.

• How do we make it light up?

6



AND (Logical product)

• AND is a binary (two-operand) operation.

• It can be written a number of ways:

A&B  A∧B  A⋅B  AB

• If we use the and instruction (& in C):

7

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

& 0 0 1 1 1 0 1 0

= 0 0 1 1 0 0 0 0

1 1 1 1 0 0 0 0

we did 8 independent AND operations



"Switching" things up ;))))))))))))))))))))))

• NOW how can we make it light up?

8



OR (“Logical” sum…?)

• We might say "and/or" in English.

• It can be written a number of ways:

A|B  A∨B  A+B

• If we use the or instruction ( | in C):

9

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

| 0 0 1 1 1 0 1 0

= 1 1 1 1 1 0 1 0

1 1 1 1 0 0 0 0

We did 8 independent OR operations.



Bit shifting

• Besides AND, OR, and NOT, we can move bits around, too.

10

1 1 0 0 1 1 1 1

1 1 0 0 1 1 1 1 0

1 1 0 0 1 1 1 1 0 0

1 1 0 0 1 1 1 1 0 0 0

1 1 0 0 1 1 1 1 0 0 0 0

if we shift these bits left 
by 1…

we stick a 0 at the bottom

again!

AGAIN!

AGAIN!!!!



Left-shifting in C/Java                                   (animated)

• C (and Java) use the << operator for left shift

B = A << 4; // B = A shifted left 4 bits

If the bottom 4 bits of the result are now 0s…
▪ …what happened to the top 4 bits?

11

0000 0000 1111 1100 1101 1100 11110011

Bit Bucket

the bit bucket is not a real place

it's a programmer joke ok

in the UK they might say the “Bit Bin”

bc that’s their word for trash



>_> >_> >_> ☺

• We can shift right, too

12

0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1

0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0

● C/Java use >>, this in MIPS is the srl (Shift Right Logical) instruction

see what I mean about 32 bits on a slide

Q: What happens when we shift a negative number to the right?



Shift Right (Logical)

• We can shift right, too (srl in MIPS)

13

0 1 1 0 0 1 1 1 1

0 0 1 1 0 0 1 1 1

if we shift these bits right 
by 1…

we stick a 0 at the top

again!

AGAIN!

Wait… what if this was a 
negative number?

1 1 0 0 1 1 1 1

0 0 0 1 1 0 0 1 1

0 0 0 0 1 1 0 0 1



Shift Right (Arithmetic)

• We can shift right with sign-extension, too (MIPS: sra)

14

1 1 1 0 0 1 1 1 1

1 1 1 1 0 0 1 1 1

if we shift these bits right 
by 1…

we copy the 1 at the top (or 0, 
if MSB was a 0)

again!

AGAIN!

AGAIN!!!!!! (It’s still 
negative!)

1 1 0 0 1 1 1 1

1 1 1 1 1 0 0 1 1

1 1 1 1 1 1 0 0 1



Huh… that's weird

• Let's start with a value like 5 and shift left and see what happens:

15

Binary Decimal

101 5

1010 10

10100 20

101000 40

1010000 80

Why is this happening

Well uh... what if I gave you

49018853
How do you multiply that by 10?

by 100?

by 100000?

Something very similar is 
happening here



a << n == a * 2n

• Shifting left by n is the same as multiplying by 2n

▪ You probably learned this as "moving the decimal point"
• And moving the decimal point right is like shifting the digits left

• Shifting is fast and easy on most CPUs.
▪ Way faster than multiplication in any case.

▪ (It’s not a great reason to do it when you’re using C though)

• Hey… if shifting left is the same as multiplying…

16



a >> n == a / 2n, ish

• You got it

• Shifting right by n is like dividing by 2n

▪ sort of.

• What's 1012 shifted right by 1?
▪ 102, which is 2…

• It's like doing integer (or flooring) division

• Generally, compilers are smart enough that you just multiply/divide
▪ It’s confusing to shift just to optimize performance.

▪ It’s good to not be clever until it is proven that you need to be.

17



C Bitwise Operations: Summary

C code Description MIPS instruction

When x is signed (most of the time…):

CS/COE 0449 – Spring 2019/2020 18



Fractional Encoding
Every Time I Teach Floats I Want Some Root Beer

19CS/COE 0449 – Spring 2019/2020



Fractional numbers

• Up to this point we have been working with integer numbers.
▪ Unsigned and signed!

• However, Real world numbers are… Real numbers. Like so:

• That creates new challenges!
▪ Let’s start by taking a look at them.

20

2 0 1 9

2 0 1 9.320



Just a fraction of a number

• The numbers we use are written positionally: the position of a digit 
within the number has a meaning.

• What about when the numbers go over the decimal point?

21

2 0 1 9
1s10s100s1000s

100101102103

10ths

10(-1)

100ths

10(-2)

1000ths

10(-3)

. 3 2 0 ?



A fraction of a bit?

• Binary is the same! 

• Just replace 10s with 2s.

22

23 22 21 20

0 1 1 0
8s         4s           2s          1s

2(-1) 2(-2) 2(-3) 2(-4)

.1 1 0 1
2ths? 4ths       8ths      16ths



To convert into decimal, just add stuff

23

23 22 21 20

0 1 1 0
2(-1) 2(-2) 2(-3) 2(-4)

.1 1 0 1
0 × 8 +
1 × 4 + 
1 × 2 + 
0 × 1 +
1 × .5 +
1 × .25 + 
0 × .125 + 
1 × .0625

=

= 6.812510



From decimal to binary? Tricky?

24

6.8125 10

0.812510

x        2
1.6250

0.625010

x        2
1.2500

0.250010

x        2
0.5000

0.500010

x        2
1.0000

6÷210 = 3R0

3÷210 = 1R1

1 1 11 100.

MSB

LSB



So, it’s easy right? Well…

25

What about: 0.1 10

0.110

x  2
0.2

0.210

x 2
0.4

0.410

x  2
0.8

0.810

x  2
1.6

00 10.0



So, it’s easy right? Well……

26

What about: 0.1 10
0.610

x  2
1.2

0.210

x 2
0.4

0.410

x  2
0.8

0.810

x  2
1.6

00 10.0
0.110

x  2
0.2

0.210

x 2
0.4

0.410

x  2
0.8

0.810

x  2
1.6

10 10



So, it’s easy right? Well………

27

What about: 0.1 10
0.610

x  2
1.2

0.210

x 2
0.4

0.410

x  2
0.8

0.810

x  2
1.6

00 10.0
0.110

x  2
0.2

0.210

x 2
0.4

0.410

x  2
0.8

0.810

x  2
1.6

10 10
10 10

0.610

x  2
1.2

0.210

x 2
0.4

0.410

x  2
0.8

0.810

x  2
1.6. . .



WELL…

CS/COE 0449 – Spring 2019/2020 28

110011001100110011001100110011001100110011001100110011001100110011001
100110011001100110011001100110011001100110011001100110011001100110011
001100110011001100110011001100110011001100110011001100110011001100110
011001100110011001100110011001100110011001100110011001100110011001100
110011001100110011001100110011001100110011001100110011001100110011001
100110011001100110011001100110011001100110011001100110011001100110011
001100110011001100110011001100110011001100110011001100110011001100110
011001100110011001100110011001100110011001100110011001100110011001100
110011001100110011001100110011001100110011001100110011001100110011001
100110011001100110011001100110011001100110011001100110011001100110011
001100110011001100110011001100110011001100110011001100110011001100110
011001100110011001100110011001100110011001100110011001100110011001100
110011001100110011001100110011001100110011001100110011001100110011001
100110011001100110011001100110011001100110011001100110011001100110011
001100110011001100110011001100110011001100110011001100110011001100110
011001100110011001100110011001100110011001100110011001100110011001100
110011001100110011001100110011001100110011001100110011001100110011001
100110011001100110011001100110011001100110011001100110011001100110011
001100110011001100110011001100110011001100110011001100110011001100110
011001100110011001100110011001100110011001100110011001100110011001100
110011001100110011001100110011001100110011001100110011001100110011001
10011001100110011001100110011001100110011001100110011001100110011001…

0. 1 10 =
0.00011001100110011001100110011001100110011001100110
0110011001100110011001100110011001100110011001100110
0110011100110011001100110011001100110011001100110011
0100110011001100110011001100110011001100110011001100
1100110100110011001100110011001100110011001100110011
0011001100110100110011001100110011001100110011001100



How much is it worth?

29

•Well, it depends on where you stop!

0.06250.0001 2

0.0976…0.00011001 2

0.0998…0.000110011001 2

=

=

=



Fixing the point

• If we want to represent decimal places, one way of doing so is by 
assuming that the lowest n digits are the decimal places.

30

$12.34

+$10.81
$23.15

1234

+1081
2315

this is called fixed-point 
representation



A rising tide

• Maybe half-and-half? 16.16 number looks like this:

31

0011 0000 0101 1010.1000 0000 1111 1111

0011.0000 0101 1010 1000 0000 1111 1111

0011 0000 0101 1010 1000 0000.1111 1111

binary point

the largest (signed) value we can 
represent is +32767.9999ish

the smallest fraction we can 
represent is 1/65536

What if we place the binary point to the left…

…we can get much higher accuracy near 0…

…then we trade off accuracy for range further away from 0.

…but if we place the binary point to the right…



Move the point

• What if we could float the point around?

▪ Enter scientific notation: The number -0.0039 can be represented:

• These both represent the same number, but we need to move the decimal 
point according to the power of ten represented.

• The bottom example is in normalized scientific notation. 
▪ There is only one non-zero digit to the left of the point.

• Because the decimal point can be moved, we call this representation:

32

-3.9   × 10-3
-0.39  × 10-2

Floating point



IEEE 754

• Established in 1985, updated as recently as 2008.

• Standard for floating-point representation and arithmetic that 
virtually every CPU now uses.

• Floating-point representation is based around scientific notation:

33

1348 =
-0.0039 =
-1440000 =

+1.348 × 10+3

-3.9   × 10-3

-1.44  × 10+6

sign significand exponent



Binary Scientific Notation

• Scientific notation works equally well in any other base!
▪ (below uses base-10 exponents for clarity)

34

+1001 0101 =
-0.001 010 =

-1001 0000 0000 0000 =

+1.001 0101 × 2+7

-1.010      × 2-3

-1.001      × 2+15

What do you notice 

about the digit before 

the binary point?

(+/-)1.f × 2exp f – fraction
1.f – significand
exp – exponent



IEEE 754 Single-precision

• Known as float in C/C++/Java etc., 32-bit float format

• 1 bit for sign, 8 bits for the exponent, 23 bits for the fraction

35illustration from user Stannered on Wikimedia Commons

• Tradeoff:
▪ More accuracy = More fraction bits

▪ More range = More exponent bits

• Every design has tradeoffs ¯\_(ツ)_/¯
▪ Welcome to Systems!



IEEE 754 Single-precision

• Known as float in C/C++/Java etc., 32-bit float format

• 1 bit for sign, 8 bits for the exponent, 23 bits for the fraction

36illustration from user Stannered on Wikimedia Commons

• The fraction field only stores the digits after the binary point

• The 1 before the binary point is implicit!
▪ This is called normalized representation

▪ In effect this gives us a 24-bit significand

▪ The only number with a 0 before the binary point is 0!

• The significand of floating-point numbers is in sign-magnitude!
▪ Do you remember the downside(s)?



The exponent field

• The exponent field is 8 bits, and can hold positive or negative 
exponents, but... it doesn't use S-M, 1's, or 2's complement.

• It uses something called biased notation.
▪ biased representation = signed number + bias constant

▪ single-precision floats use a bias constant of 127

37

-127 =>
-10 =>
34 =>

0
117
161

Signed Biased

• The exponent can range from -126 to +127 (1 to 254 biased)
▪ 0 and 255 are reserved!

• Why'd they do this?
▪ so you can sort floats with integer comparisons??



Binary Scientific Notation (revisited)

• Our previous numbers are actually

38

(-1)0 x 1.001 0101 × 2134-127

(-1)1 x 1.010      × 2124-127

(-1)1 x 1.001      × 2142-127

+1.001 0101 × 2+7 =
-1.010      × 2-3 =
-1.001      × 2+15=

(-1)s x1.f × 2exp-127 s – sign
f – fraction
exp – biased exponent



Encoding an integer as a float 

• You have an integer, like 2471 = 0000 1001 1010 01112

1. put it in scientific notation

• 1.001 1010 01112 × 2+11

2. get the exponent field by adding the bias constant

• 11 + 127 = 138 = 100010102
3. copy the bits after the binary point into the fraction field

39

s exponent fraction

0 10001010 00110100111000000…000

start at the left side!positive



Encoding a number as a float 

You have a number, like -12.5937510

1. Convert to binary:             Integer part: 11002     Fractional part: 0.100112

2. Write it in scientific notation:             1100.100112 x 20

3. Normalize it:                                           1.100100112 x 23

4. Calculate biased exponent            +3 + 127 =  13010 =  100000102

40

s exponent fraction

1 10000010 10010011000000000…000
CS/COE 0449 – Spring 2019/2020



while ( computers don’t do real math ) { … }

CS/COE 0449 – Spring 2019/2020 41Q: Consider and/or review the IEEE 754 standard. What is happening here?

     



Other formats

• The most common other format is double-precision (C/C++/Java 
double), which uses an 11-bit exponent and 52-bit fraction

42both illustrations from user Codekaizen on Wikimedia Commons

How much is 

the bias? How much 

is the bias?

• GPUs have driven the creation of a half-precision 
16-bit floating-point format. it's adorable



This could be a whole unit itself...

• Floating-point arithmetic is COMPLEX STUFF.

• But it's not super useful to know unless you're either:
▪ Doing lots of high-precision numerical programming, or

▪ Implementing floating-point arithmetic yourself.

• However...
▪ It's good to have an understanding of why limitations exist.

▪ It's good to have an appreciation of how complex this is... and how much 
better things are now than they were in the 1970s and 1980s!

▪ It’s good to know things do not behave as expected when using float and 
double!!

43


