
Introduction

Spring 2019/2020

wilkie
(with content borrowed from Vinicius Petrucci

and Jarrett Billingsley)

CS/COE 0449
Introduction to

Systems Softwareto C

4

Overview of C
What You C is What You Get

2CS/COE 0449 – Spring 2019/2020

C: The Universal Assembly Language

C is not a “very high-level” language,
nor a “big” one, and is not specialized to
any particular area of application. But
its absence of restrictions and its
generality make it more convenient and
effective for many tasks than
supposedly more powerful languages.

— Kernighan and Ritchie

• Allows writing programs to exploit
underlying features of the
architecture – memory
management, special instructions,
parallelism.

3CS/COE 0449 – Spring 2019/2020

C: Relevance

• From IEEE Spectrum:
▪ https://spectrum.ieee.org/static/inter

active-the-top-programming-
languages-2019

• Still relatively popular…
▪ Lots of legacy code.

▪ Lots of embedded devices.

▪ Python, Java, R, JS are all written in C.

CS/COE 0449 – Spring 2019/2020 4

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019

Compilation

• C is a compiled language.
▪ Code is generally converted into machine code.

▪ Java, by contrast, indirectly converts to machine code using a byte-code.

▪ Python, by contrast to both, interprets the code.

• The difference is in a trade-off about when and how to create a
machine-level representation of the source code.

• A general C compiler will typically convert *.c source files into an
intermediate *.o object file. Then, it will link these together to form
an executable.
▪ Assembly is also part of this process, but it is done behind the scenes.

▪ You can have gcc (a common C compiler) spit out the assembly if you want!

CS/COE 0449 – Spring 2019/2020 5

Compilation: Simple Overview – Step 1

CS/COE 0449 – Spring 2019/2020 6

hello.c hello.o

• The compiler takes source code (*.c
files) and translates them into
machine code.

• This file is called an “object file” and
is just potentially one part of your
overall project.

• The machine code is not quite an
executable.
▪ This object file is JUST representing

the code for that particular source file.

▪ You may require extra stuff provided
by the system elsewhere.

Compilation: Simple Overview – Step 2

CS/COE 0449 – Spring 2019/2020 7

hello.c hello.o

• You may have multiple files.

• They may reference each other.
▪ For instance, one file may contain

certain common functionality and then
this is invoked by your program
elsewhere.

• You break your project up into
pieces similarly to your Java
programs.

• The compiler treats them
independently.

util.c util.o

Compilation: Simple Overview – Step 3

CS/COE 0449 – Spring 2019/2020 8

hello.c hello.o

• Then, each piece is
merged together to
form the executable.

• This process is called
linking.
▪ The name refers to how

the references to
functions, etc, between
files are now filled in.

▪ Before this step… it is
unclear where functions
will end up in the final
executable.

▪ Keep this in mind as we
look at memory and
pointers later!

util.c util.o stdio.o

hello

External Libraries

It's just a grinder.

• In summary:

9

hello.c

code goes in, sausage object
files come out

Some compilers output
assembly and rely on an

assembler to produce
machine code

These days, it's common
for the compiler itself to
produce machine code,

or some kind of
platform-independent

assembly code
(typically: a bytecode)

Compilation vs. Interpretation

C (compiled)

• Compiler + Linker translates
code into machine code.

• Machine code can be directly
loaded by the OS and executed
by the hardware. Fast!!

• New hardware targets require
recompilation in order to
execute on those new systems.

CS/COE 0449 – Spring 2019/2020 10

Python (interpreted)

• Interpreter is written in some
language (e.g. C) that is itself
translated into machine code.

• The Python source code is then
executed as it is read by the
interpreter. Usually slower.

• Very portable! No reliance on
hardware beyond the interpreter.

Compilation vs. Virtual Targets (bytecode)

• Java translates source to a “byte code” which is a made-up
architecture, but it resembles machine code somewhat.

• Technically, architectures could execute this byte code directly.
▪ But these were never successful or practical.

• Instead, a type of virtual machine simulates that pseudo-
architecture. (interpretation)
▪ Periodically, the fake byte code is translated into machine code.

▪ This is a type of delayed compilation! Just-In-Time (JIT) compilation.

• This is a compromise to either approach.
▪ Surprisingly very competitive in speed.

▪ I don’t think the JVM-style JIT is going away any time soon.

CS/COE 0449 – Spring 2019/2020 11

C vs. Java

CS/COE 0449 – Spring 2019/2020 12

C (C99) Java

Type of
Language

Function Oriented Object Oriented

Programming
Unit

Function Class = Abstract Data Type

Compilation
gcc hello.c - creates machine
language code

javac Hello.java - creates Java virtual machine
language bytecode

Execution
a.out - loads and executes
program

java Hello - interprets bytecodes

hello, world

Storage Manual (malloc, free) Automatic (garbage collection)

From http://www.cs.princeton.edu/introcs/faq/c2java.html

http://www.cs.princeton.edu/introcs/faq/c2java.html

C vs. Java

CS/COE 0449 – Spring 2019/2020 13

C (C99) Java

Comments or … end of line or … end of line

Constants

Preprocessor Yes No

Variable
declaration

At beginning of a block Before you use it

Variable
naming
conventions

Accessing a
library

From http://www.cs.princeton.edu/introcs/faq/c2java.html

http://www.cs.princeton.edu/introcs/faq/c2java.html

Hello World

CS/COE 0449 – Spring 2019/2020 14

C Dialects

• You will see a lot of different styles of C in the world at large.
▪ The syntax has changed very little.

• There have been a few different standard revisions.
▪ C89 – ANSI / ISO C

• – –

▪ C99 – Adds ‘complex’ numbers and single-line comments
• –

▪ C11 – Newer than 99 (laughs in Y2K bug) starts to standardize
Unicode and threading libraries.

• –

▪ C18 – Minor refinement of C11. The current C standard.
• –

• We will more or less focus on the C99 standard in our course.
▪ I’ll try to point out some newer things if they are relevant.

CS/COE 0449 – Spring 2019/2020 15

The C Syntax
Nothing can be said to be certain, except death and C-like syntaxes.

CS/COE 0449 – Spring 2019/2020 16

The C Pre-Processor

• The C language is incredibly simplistic.

• To add some constrained complexity, there is a macro language.
▪ This code does not get translated to machine code, but to more code!

17

The “main” function

18

Declaring variables

19

Casting

20

Integer Sizes – Revisted: sizeof

21

Integer Sizes – Revisted

22

Integers: Python vs. Java vs. C

• C:
▪ integer type that target processor works with most efficiently

▪ For modern C, this is generally a good-enough default choice.

• Only guarantee:
▪ ≥ ≥ ≥

▪ Also, >= 16 bits, >= 32 bits

▪ All could be 64 bits

• Impacts portability between architectures

Language sizeof(int)

Python >=32 bits (plain ints), infinite (long ints)

Java 32 bits

C Depends on computer; 16 or 32 or 64

23CS/COE 0449 – Spring 2019/2020

Constants

24

Enumerations

25

Operators: Java stole ‘em from here

26

Augmented Operators

27

–

Expressions: an expression of frustration!!

• C often coerces (implicitly casts) integers when operating on them.

• To remove ambiguity, expressions, such as , result in a type
that most accommodates that operation.

• Specifically, C will coerce all inputs of binary operators to at least
an type.
▪ You’ll find that “this is weird, but consistent” is C’s general motto

CS/COE 0449 – Spring 2019/2020 28

The C Syntax: Control Flow
Once you C the program, you can BE the program.

CS/COE 0449 – Spring 2019/2020 29

Controlling the flow: an intro to spaghetti

CS/COE 0449 – Spring 2019/2020 30

Controlling the flow: Boolean Expressions

• C does not have a Boolean type!
▪ However, the C99 and newer standard library provides one in

• The Boolean expressions are actually just an type.
▪ It is just the general, default type. Weird but consistent, yet again!

CS/COE 0449 – Spring 2019/2020 31

Controlling the flow: Putting it Together

• statements therefore take an and not a Boolean, as an
expression.
▪ If the expression is it is considered false.

▪ Otherwise, it is considered true.

CS/COE 0449 – Spring 2019/2020 32

Throwing us all for a loop

• Most loops (while, do) work exactly like Java.
▪ Except, of course, the expressions are typed, like statements.

• For loops only come in the traditional variety:
▪

▪ C89 does not allow variable declaration within:
• ERROR:

▪ However, C99 and newer does allow this. Please do it.

• Loops have special statements that alter the flow:
▪ will end the current iteration and start the next.

▪ will exit the loop entirely.

CS/COE 0449 – Spring 2019/2020 33

Loop Refresher: While, Do-While, For Loops

34

Taking a break and switching it up

• The statement requires proper placement of to work
properly.
▪ Starts at matching expression and follows until it sees a .

▪ It will “fall through” other statements if there is no between them.

▪ Sometimes fall through is used on purpose... but it’s a bug 99% of the time :/

CS/COE 0449 – Spring 2019/2020 35

Control Flow: Summary

• Conditional Blocks:
▪

▪

▪ The if statement can be chained:

• Conventional Loops:
▪

▪

36

Note: a can be a { block }

Control Flow: Summary

• For Loops:
▪

▪

▪

• Switch:
▪

▪

37

Note: a can be a { block }

What’s your function?

• Familiar: Java is, once again, C-
like

• You declare the return type
before the name.
▪ is used when there is

nothing returned
▪ It is also used to explicitly denote

there being no arguments.
▪ You SHOULD specify

instead of having an empty list.

• Functions must be declared
before they can be used.
▪ We will look at how we divide

functions up between files soon!

CS/COE 0449 – Spring 2019/2020 38

This is all the structure you get, kid

• C gives us a very simple method of defining aggregate data types.

• The struct keyword can combine several data types together:

CS/COE 0449 – Spring 2019/2020 39

I don’t like all that typing… So I’ll… typedef it

• To avoid typing the full name “struct Song” we can create a Song
type instead.

• The typedef keyword defines new types.

CS/COE 0449 – Spring 2019/2020 40

I don’t like all that typing… So I’ll… typedef it

• You can also do this with integer types, for instance to define bool:

• And types, although it won’t complain if you mix/match them:

• Now, functions can better illustrate they take an enum value:
▪ Though, it accepts any integer and, yikes, any enum value without complaint!

CS/COE 0449 – Spring 2019/2020
41

That’s seriously all you get…

• Unlike Java, C is not Object-Oriented and has no class instantiation.

• That’s C++!

CS/COE 0449 – Spring 2019/2020 42

Garbage in, garbage out: initialization

• As we saw earlier, variables don’t require initialization.

• However, unlike Java, the variables do not have a default value.
▪ Java will initialize integers to 0 if you do not specify.

▪ C, on the other hand…

• The default values for variables are undefined.
▪ They could be anything.

▪ The Operating System ultimately decides.
• Generally, whatever memory is left over. Also known as “garbage.”

▪ ALWAYS INITIALIZE YOUR VARIABLES

CS/COE 0449 – Spring 2019/2020 43

The trouble is stacking up on us!

44Q: Hmm. Where is the value for ‘x’ coming from? Why?

Where’s that data coming from??

• Every variable and data in your program technically has a location
in which it lives.

• In the previous nonsense example, the “x” variable was sharing the
same space as the “a” variable from the other function.
▪ The section of incremental memory called the stack, in this specific case.

▪ This is not defined behavior of the language, but rather the OS.

• C does not impose many rules on how memory is laid out and used.
▪ In fact, it gets right out of the way and lets you fall flat on your face.

• Now, we will take a deeper dive into… MEMORY
CS/COE 0449 – Spring 2019/2020 45

