CS/COE 0449
Introduction to

Systems Software

TN

A CASE STUDY

wilkie

HISTORY AND OVERVIEW

| swear C is not really as hellish as this makes it seem.

e

Basic information

* First published as a mail-order
shareware title in 1993 by Id
Software; published by Apogee.

* A gritty-for-its-era early first-
person action video game
eventually defining the First-
Person-Shooter genre (FPS)

* You play as a lone space marine
in a survival-horror setting,
albeit cartoony by today’s
standards, attempting to get to
the exit of each level.

Yes, it was distributed on save icons

 DOOM originally came via mail-order purchase on four high-
density floppy disks, a relatively large number at the time.
= 1.44MB (or 1.41MiB) per disk is still quite the constraint.
= Some modern websites download more data just to load their front page.
= Yes. | have... every single version they ever released. On disks. Shut up.

Tag
To install DOOM, type INSTALL and press ENTER

puny

REGISTERED
DISK 1

8 Created by id Software Vv 1.686
1993 id Software, Inc. All Rights Reserved.

An evergreen controversy

 Although cartoony today, the game’s violent aesthetic stood alone
upon release causing a stir still reverberating today.

= The violence and satanic depictions throughout the
game caused a stir among more conservative crowds.

= The game was famously used by now-disgraced
lawyer and activist Jack Thompson in his effort to
highlight a possible (likely slightly true) correlation
between games and real-world violent acts.

= [t was also infamously referenced by at least one of
the perpetrators of the Columbine school shooting
who was an avid player of the game.

* It was one of the most popular games of its time...
so that’s not saying much.

Me, when | get
a migraine

Indeed, we have many good modern ports!

| don't have a real good guess at how many people are going to be
playing with this, but if significant projects are undertaken, it would

be cool to see a level of community cooperation. | know that most early
projects are going to be rough hacks done in isolation, but | would be
very pleased to see a coordinated 'net release of an improved, backwards
compatable version of DOOM on multiple platforms next year.

Have fun.

John Carmack
12-23-97

* John's typo, not mine. Spell-checking cost extra back then.

Free and Open Source: “It Runs Doom”

* The DOOM source code has long been available to anyone since late
1997 and under an aggressively open license (GPL) since 1999.

= Mirrored on GitHub: https://github.com/id-Software/DOOM/tree/master/linuxdoom-1.10
= The modern port is GZDoom: https://zdoom.org/downloads

 The availability has Doom running on a (decommissioned) bank ATM
allowed it to be studied -
by academics such as \\ 7
myself. \ N 4

= And it has been ported to Jo v
ATMs and such because vy -
why not. “It Runs Doom”

= |t lives forever, essentially,
as is the power of the
open-source community.

https://github.com/id-Software/DOOM/tree/master/linuxdoom-1.10
https://zdoom.org/downloads

THE DESIGN

A multi-dimensional illusion in a game about teleporter mishaps. Fun!

The game, at a high-level

* A faux-3D textured environment.
= Controlled movement only happens on X and Y axis (That is, no jumping.)
= No slopes. All walls come to right angles with floors and ceilings.

* Fixed angle of view. Cannot look up or down or tilt the “camera.”
= However, you can ascend vertically via stairs or simple elevators.

* Monsters populate each level and have minor intelligence to follow
you by sight or sound and attack you or other monsters.

= When monsters are struck by another’s projectile, they start attacking each
other. Called “monster infighting”.

* [tems populate the level and are picked up by colliding with them.
= These include common genre tropes: ammo, health, armor.

Faux-3D Simplicity

* Level is 2D _

—
= Simplifies a lot of geometry math. (B
—

» Goal: Get to exit.

First level of Doom (E1M1) via doomwiki.org E

LAYOUT AND CONVENTIONS

This showcases some weird C styling generally for greater speed/portability.

e

Coding Style

// . ‘

1 A Troophttack UpperCasg function names.

// = A_ prefix denotes subsystem

void A_TroopAttack (mobj_t* actor) or Category,

{ . .)
int damage: A good strategy to mitigate C's

lack of classes or namespaces

if (lactor->target) in large projects!

return;

« Allman/BSD style

A_FaceTarget (actor);

if (P_CheckMeleeRange (actor)) = Braces on their own line.
{
S_StartSound (actor, sfx_claw); .
damage = (P_Random()%8+1)*3; « ANSI C (C89) dialect.
P_DamageMobj (actor->target, actor, actor, damage); - Variables declared at tOp
return;)

}
. Passes arguments by-ref
// launch a missile

P_SpawnMissile (actor, actor->target, MT_TROOPSHOT); = Avoids return values often.
} = Prefers pointers to structs.

Header files and global variables...

doomdef.h

// Game mode handling - identify IWAD version
// to handle IWAD dependend animations etc.
typedef enum

{
shareware, // DOOM 1 shareware, E1, M9
registered, // DOOM 1 registered, E3, M27
commercial, // DOOM 2 retail, E1 M34 retail,

// DOOM 1 retail, E4, M36
indetermined // Well, no IWAD found.
} GameMode_t;

doomstat.h

/] ===

// Game Mode - identify IWAD as shareware,

// retail etc.

extern GameMode_t gamemode; // Says there is a
// gamemode variable
// somewhere. ..

doomstat.c

GameMode_t gamemode; // The ACTUAL gamemode variable

 Separating C code into multiple
files:

= x.h files contain types/enums and
function declarations.

= x_c files will contain function
implementations.

e The extern says “Don’t create
this. It exists somewhere else.”

= |t makes a global available to other C
files. They just #include the header.

= You declare it once (without extern)
in the corresponding C file.

= Therefore, each C file can share data.

Header files and global variables...

g game.h

//

// GAME

//

void G_DeathMatchSpawnPlayer (int playernum);

void G_InitNew (skill_t skill, int episode, int map);
// Can be called by the startup code or M_Responder,
// calls P_SetupLevel or W_EnterWorld.

void G_LoadGame (char* name);

void G_DolLoadGame (void);

// Called by M_Responder.
void G_SaveGame (int slot, char* description);

void G_ExitLevel (void);
void G_SecretExitlLevel (void);

void G_WorldDone (void);

 Separating C code into multiple
files:

= x.h files contain types/enums and
function declarations.

= x_c files will contain function
implementations.

* You can declare functions without
implementations.
= Typically for header files.

= Implement them in their x.c file.
* g_game.c in this case

= Including this header file will allow
use of this function.

Header files and global variables...

g_game.C

// wilkie's note: remember boolean isn’t defined by C! e Here we see the implementations
boolean ~ secretexit; | of some of the functions.

// wilkie's note: gameaction_t defined elsewhere . . .

gameaction_t gameaction; = Doom likes its prlvate global data!

= No file in the Doom source code
defines secretexit as extern so

false; only this file can use it!
ga_completed;

void G_ExitLevel (void)
{

secretexit
gameaction

b
e Cultural artifacts become code.

= Code reflects culture.

// Here's for the german edition.
void G_SecretExitlLevel (void)

{ = The secret levels in Doom are in the
// IF NO WOLF3D LEVELS, NO SECRET EXIT! Style Of their ear“er WW”_era game
if ((gamemode == commercial) . ’

&& (W_CheckNumForName("map31")<0)) WOIfenSteln 3D. .
secretexit = false; = They need to special case some code
else because German law does not allow
secretexit = true; Nazi imagery

gameaction = ga_completed;

Bugs happen to all of us...

d__ﬂﬁaiﬂ,c if (laccess (plutoniawad, R_OK))

#include "doomdef.h” { w checks if file exists

#include "doomstat.h“ gamemode = commercial; (0 on SUCCGSS)
#include <unistd.h> // for 'access’ D_AddFile (plutoniawad);

#include <stdlib.h> // for 'getenv'’ return;

#include <stdio.h> // for ’'sprintf’ 3}

// Checks availability of IWAD files by name, if (laccess (doomlwad,R_OK))

// to determine whether registered/commercial features ([sets the gamemode gIObaI

// should be executed (notably loading PWAD's).

. } i i gamemode = shareware;
void IdentifyVersion (void) {

D_AddFile (doomlwad);
char* doomlwad;

return;

charx plutoniawad; }
char* doomwaddir = getenv("DOOMWADDIR"); }
if (!doomwaddir)

doomiaddir = 7., sprintf islike printf, °*Apparently, somebody ,
P ¢ but prints to a buffer. corrected Shawn Green's
doomlwad = malloc(strlen(doomwaddir)+1+9+1); COpy-and-paSte Of ma"OC.
sprintf(doomlwad, "%s/dooml.wad”, doomwaddir); = |t was not aIIocating enough

// Bug, dear Shawn. i
ug W space for the string copy!

* Try not to copy and paste!!

// Insufficient malloc, caused spurious realloc errors.
plutoniawad = malloc(strlen(doomwaddir)+1+/%9%/12+1f; o5
sprintf(plutoniawad, "%s/plutonia.wad”, doomwaddir) ;¥

The culture of bug hunting

» A person that studies insects is called an entomologist.

= However, the first documented case of a real-life insect causing an
error in a computer was a moth. A story chronicled by Grace Hopper.

= Somebody who studies moths/butterflies is called a lepidopterist.
= (This will not be on the exam)

* Ok... ok... the word bug in engineering is hundreds of years old.
= We're not sure where it actually comes from.

= However, today, we call the modern
bug hunter a “speedrunner.”

* It's a bit of an artform of
its own these days.

The fear of moths is called Mottephobia.

Looking at things at another angle...

4shockblast, EIM1 UV/Pacifist, 0:08s - Record set in 2019 after 22 years unbroken
https://www.youtube.com/watch?v=1UkeFwJ-yHI

» Consider:
= |n what weird way is the player moving?
= Do you believe this to be intentional? Why might that be faster?

https://www.youtube.com/watch?v=1UkeFwJ-yHI

SPEEDRUNNING

Gotta go fast. Speedrunning is just a mistake made beautiful.

Going fast is not always “straight-forward”

* |If you notice from the video, the speedrunner is running at an angle.
= This allows them to move at a higher speed.

* To figure out why this works, we can consult the source code.

* First, some information:
= Doom lets you move forward and backward and turn left and right.
= There is also the ability to use keys to strafe left and right instead.
= Strafing moves you side by side (like a crabwalk)

* Let’s see how Doom implements movement!

We're drifting in two directions

p_user.c

boolean onground;

//

// P_MovePlayer

//

void P_MovePlayer (player_tx player)
{

ticemd_tx cmd;

cmd = &player->cmd;
yes, double dereferences are a thing!
player->mo->angle += (cmd->angleturn<<16);

// Do not let the player control movement
// if not onground.
onground = (player->mo->z <= player->mo->floorz);

if (cmd->forwardmove && onground)
L. Thrust (player, player->mo->angle, cmd->forwardmovex2048);

‘xuw;ﬂ£>sidemove && onground)

P_Thrust (player, player->mo->angle-ANG9@, cmd->sidemove*2048);

The 2048 is a scalar; to avoid floating point! ”

* First, it makes sure the
player is on the ground.

* If so, and you are pressing
“forward” move the player
forward!

* |If so, and you are pressing
“strafe” (sidemove), move
the player sideways!

« Wait! What if both happen?

What's the Hypotenuse

* Holding both forward and strafe keys down moves the player.

* These are both independent movement.
= The cmd->forwardmove is, at most, 50
= The cmd->sidemove is, at most, 40
= (These are setin g_game.c)

* Therefore, you are moving:
= 50 units forward

= 40 units sideways
* Hence, we call this trick “strafe 40” or SR-40

50 units/s

40 units/s

* For a total speed of:
= 64 units/second

Can we do better?

* Doom lets you use a single key to strafe left and right.

* |t also lets you press a toggle to repurpose the left and right keys.
= So, if you press this “strafe toggle” key, left and right no longer turn you.
= They strafe you.

* Let’s look at the Doom code for how this is implemented.

Let’s go even faster!

g game.c
#define MAXPLMOVE 50

void G_BuildTiccmd (ticcmd_t* cmd) {

boolean strafe;

int speed;
int forward;
int side;

Whether or not the “strafe toggle” is on
strafe = gamekeydown[key_strafe];
speed = gamekeydown[key_speed]; // The "run” button

forward = side = 0;

// let movement keys cancel each other out
if (strafe) { o If so, “right” strafes right.
if (gamekeydown[key_right]) {
side += sidemove[speed]; // This is 40

}

if (gamekeydown[key_left]) {
side -= sidemove[speed];

}

} <=]removed the else which turned the player

if (gamekeydown[key_up])
forward += forwardmove[speed];
if (gamekeydown[key_down])
forward -= forwardmove[speed];
The normal strafe key.
if (gamekeydown[key_straferight])
side += sidemove[speed]; //,&hi
if (gamekeydownl[key_strafeleft])

side -= sidemove[speed];

if (forward > MAXPLMOVE)
forward = MAXPLMOVE;

else if (forward < -MAXPLMOVE)
forward = -MAXPLMOVE;

if (side > MAXPLMOVE)

side = MAXPLMOVE; // What is this, at most?
else if (sfﬁb < -MAXPLM@YE)

side = -MAXPLMOVE0?S)

cmd->forwardmove += forward;
cmd->sidemove += side;

What’s the Hypotenuse (revisited)

* Forward and both types of strafe moves the player very quickly.

* These are both independent movement.
= The cmd->forwardmove is, at most, 50
= The cmd->sidemove is now, mistakenly, 50
= (These are setin g_game.c)

* Therefore, you are moving:
= 50 units forward

= 50 units sideways
* Hence, we call this trick “strafe 50” or SR-50

50 units/s

50 units/s

* For a total speed of:
= 71 units/second

Out-running Rockets: GOING FASTER STILL

Ll
LLLL

The WALLRUN.LMP demo file from E2MS8.

nttps://www.youtube.com/watch?v=xJ7PgOJKbEk

https://www.youtube.com/watch?v=xJ7PgOJKbEk

The “Wall Run”

* The reason behind this behavior was unknown for quite some time.
* However, the wall-run has to do with improper collision handling.

* When you hit a wall, you slide along it.
= There is some friction (you should SLOW down)

= And some code to carry your
momentum along the angle of
the wall. (a vector projection)

Wall

* However, for certain walls it speeds up. 4
= Going exactly north along a wall. o

= Going exactly east along a wall.
Intended Behavior

Let’s go even faster!

. . . d
« This function moves objects "t none
given their momentum. ptryx

ptryy
D_mobj.c When moving quickly, it ~ Xmove

tdefine MAXMOVE 30 moves half-way twice. ymove

void P_XYMovement (mobj_t* mo) { 3

A\

= mo->x +
= mo->y +
>>=1; //
>>=1; //

MAXMOVE/2 || ymove > MAXMOVE/2) {

xmove/2; // Move half-way
ymove/2;

Divides by two,

we move this much next time

fixed_t ptryx; // Position-try-x, else {
fixed_t ptryy; // "-try-y: The possible new position ptryx = mo->x + xmove; // Move the
fixed_t xmove; // Amount to move along x ptryy = mo->y + ymove; // whole way.
fixed_t ymove; // Amount to move along y , xmove = ymove = @; // We are done moving
if (mo->momx > MAXMOVE)

mo->momx = MAXMOVE ; if ('P_TryMove (mo, ppryx, ptryy)) {
else if (mo->momx < -MAXMOVE) // blocked move # ™%

mo->momx = -MAXMOVE; 1f (mo->player){{ ~

However, the slide- // try to slide along it

if (mo->momy > MAXMOVE) along-walls function =—> P_SlideMove (mo);

mo->momy = MAXMOVE; did not get the memo!) w
else if (mo->momy < -MAXMOVE) else

mo->momy = -MAXMOVE; mo->momx = mo->momy = @;

}

Xmove = Mo->MOmX; } while (xmove || ymove);

ymove = mo->momy; 3

The “Wall Run” visualized

* When going North or East, you've maximized your X or Y
momentum respectively.

* Going slightly north-east also works, but your
momentum is, then, slightly split along X and Y.

= This code looks at each momentum individually.

» @ Wall

* When the slide function is called twice with
your original momentum... it causes...
... well ... dramatic results.

- We call this an “Oops” in the trade. el

Unintended Behavior

Hmm, only North? Only East? Oh... Oops!

do {

* Thls funCtlon MOVES ObJeCtS if (xmove > MAXMOVE/2 o > MAXMOVE/2) {
given their momentum. A ptryx = mo->x + xmove/2 // Move half-way
Momentum can be ptryy = mo->y + ymove/2;
p_mobj.c negative,yet... xmove >>= 1; // Divides by two,
#define MAXMOVE 30 ymove >>= 1; // we move this much next time
void P_XYMovement (mobj_t* mo) { 3
fixed_t ptryx; // Position-try-x, else {

fixed_t ptryy; // "-try-y: The possible new position ptryx = mo->x + xmove; // Move the
fixed_t xmove; // Amount to move along x ptryy = mo->y + ymove; // whole way.
fixed_t ymove; // Amount to move along y xmove = ymove = @; // We are done moving
}
if (mo->momx > MAXMOVE)
mo->momx = MAXMOVE; if (!P_TryMove (mo, ptryx, ptryy)) {
else if (mo->momx < -MAXMOVE) // blocked move g~
mo->momx = -MAXMOVE; . . if (mo->player)¥{ =<
F::OWIII‘njnyhtlmeS does:hls // try to slide along it
get calied wnen momenitum P Slid
£ > N v : . — _SlideMove (mo);
1 (mo >m°my :x:gv? is VERY positive?) w
mo->momy = : .
. Y And, VERY negative? else
else if (mo->momy < -MAXMOVE)
mo->momy = -MAXMOVE; mo->momx = mo->momy = 0;
}
Xmove = mo->momx; } while (xmove || ymove);

ymove = mo->momy; b

The “Wall Run” visualized
o &

smaller your angle...

* The closer you are to the wall and the
= The more like Sonic the Hedgehog you become.

Wall

Here | am at the end...
Ruining my slides...

VERY Unintended Behavior

CLOSING REMARKS

‘| have not failed. I've just found 10,000 ways that won't work.”
— An elephant murderer talking about other people’s work

Your turn!

* With your knowledge of C, you unlock a lot of potential.
= You can figure out quite a few interesting things.

» The “face” depicting the character will change based on the action.
= However, this face only appeared in very odd circumstances.
= Can you spot the bug? (Hint: you can both gain and lose health simultaneously.)

©000060

st_stuff.c

if (plyr->damagecount) { // ST_MUCHPAIN is 20
if (plyr->health - st_oldhealth > ST_MUCHPAIN) {
// Selects the VERY HURT character portrait:
st_faceindex = 3;

}

) That face is kinda scary, so it's probably for the best.

Are we DOOMed to fail?

* In the end, | want to pass off some key knowledge nuggets:
= Perfect code is an illusion used to sell textbooks.

« We have gained more from these mistakes than if they weren'’t
there: art, culture, and enjoyment.
= The speedrunning community finds art in our mistakes.
= Fixing them does not improve the art, just hints at our vanity.
= The art culture around failure is not about judgement, but exploration.

* Do not come out of this course thinking perfection is the goal.
= Mistakes in C can be costly for kernels, etc... sure.

= However, in your day-to-day life, know that often these small mistakes are
certainly common at all levels of skill. They can be fixed. They can be fun.

* So, have fun writing and reading code!

