
Introduction

Spring 2019/2020

wilkie
(with content borrowed from Vinicius Petrucci

and Jarrett Billingsley)

CS/COE 0449
Introduction to

Systems Softwareto Memory

5

The Memory Model
If you forget how addressing works, I have a few pointers for you.

CS/COE 0449 – Spring 2019/2020 2

The C Memory Model

• Memory is a continuous series of bits.
▪ It can be logically divided into bytes or words.

• We will treat it as byte-addressable which
means individual bytes can be read.
▪ This is not always the case!!

▪ Consider masking and shifting to know the
workaround!

• With byte-addressable memory, each and
every byte (8 bits) has its own unique address.
▪ It’s the place it lives!! Memory is JUST LIKE US!

▪ Address starts at 0, second byte is at address 1, and
increases (“upward”) as you add new data.

CS/COE 0449 – Spring 2019/2020
3

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

The C Memory Model

• There are two main parts of a program:
code and data
▪ “code” is sometimes called “text”

• Where in memory should each go?
▪ Should we interleave them?

▪ Which do you think is usually largest?

• How do we use memory dynamically?
▪ That is, only when we know we need it, in

the moment.

CS/COE 0449 – Spring 2019/2020
4

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

The C Memory Model: Code

• Code has a few known properties:
▪ It likely should not change.

▪ It must be loaded before a program can start.

CS/COE 0449 – Spring 2019/2020
5

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

The C Memory Model: Static Data

• Static Data is an oft forgotten but useful section.
▪ It does change. (contrary to its name)

▪ It generally must be loaded before a program starts.

▪ The size of the data and section is fixed.

CS/COE 0449 – Spring 2019/2020
6

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

The C Memory Model: The Stack

• The Stack is a space for temporary dynamic data.
▪ Holds local variables and function arguments.

▪ Allocated when functions are called. Freed on return.

▪ Grows “downward”! (Allocates lower addresses)

CS/COE 0449 – Spring 2019/2020
7

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

Stack Allocation allows
recursion. However, the more
you recurse, the more you
use! (Stack is only freed on return)

Revisiting our past troubles:

8Q: Hmm. Where is the value for ‘x’ coming from? Why?

2. Stack Allocation

4. Stack Allocation (No initialization!)

1. Function Call

3. Function Call

It reuses what is already there!!

The C Memory Model: The Heap

• The Heap is the dynamic data section!
▪ Managing this memory can be very complex.

▪ No garbage collection provided!!

▪ We will revisit it in greater detail very soon.

CS/COE 0449 – Spring 2019/2020
9

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

Pointers
They point to things. They are not the things.

CS/COE 0449 – Spring 2019/2020 10

The “Memory Address” Variable Type

• In C, we have integer types, floating point types…

• Now we introduce our dedicated address type!

• A pointer is a specific variable type that holds a memory address.

• You can create a pointer that points to any address in memory.

• Furthermore, you can tell it what type of data it should interpret
that memory to be: Just place that at the end.

CS/COE 0449 – Spring 2019/2020
11

42

Interpreting Pointers: Basics

CS/COE 0449 – Spring 2019/2020
12

Memory
(32-bit addresses)

3.14159

• Pointers can pointer to individual sections of
memory.
▪ They interpret whatever binary information is there.

42 or 0.1543e10(-8) ?

Interpreting Pointers: Hmm

CS/COE 0449 – Spring 2019/2020
13

Memory
(32-bit addresses)

3.14159

• Pointers can refer to the same address as other
pointers just fine.
▪ They interpret whatever binary information is there.

42 or 0.1543e10(-8) ?

Interpreting Pointers: A Sign of Trouble

CS/COE 0449 – Spring 2019/2020
14

Memory
(32-bit addresses)

3.14159

• Without the pointer, allocated data may linger
forever without a way to reference it again!
▪ C does not manage freeing memory for you.

Help I’m Lost!

Dereferencing Pointers: A Star is Born

• So, we have some ambiguity in our language.

• If we have a variable that holds an address, normal operations
change the address not the value referenced by the pointer.

• We use the dereference operator ()

CS/COE 0449 – Spring 2019/2020
15

Dereferencing Pointers: A Star is Born

• Remember: C implicitly coerces whatever values you throw at it…

• Incorrectly assigning a value to an address or vice versa will be…
▪ … Well … It will be surprising to say the least.

• Generally, compilers will issue a warning.
▪ But warnings mean it still compiles!! (You should eliminate warnings in practice)

CS/COE 0449 – Spring 2019/2020
16

Referencing Data: An… &… is Born?

• Again… ambiguity. When do you want the address or the data?

• We can pull out the address to data and assign that to a pointer.
▪ Sometimes we refer to pointers as ‘references’ to data.

• We use the reference operator ()

CS/COE 0449 – Spring 2019/2020
17

Turtles all the way down

CS/COE 0449 – Spring 2019/2020
18

Like skipping rocks on the lake…

CS/COE 0449 – Spring 2019/2020
19

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13

data dataptr

42 4

Like skipping rocks on the lake…

CS/COE 0449 – Spring 2019/2020
20

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13

data dataptrptr

42 A4

dataptr

The C Memory Model: The Heap

• The Heap is the dynamic data section!
▪ You interact with the heap entirely with pointers.

▪ returns the address to the heap with at least
the number of bytes requested. Or on error.

CS/COE 0449 – Spring 2019/2020
21

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

Arrays
It is what all my fellow teachers desperately need: Arrays.

(Support your local teacher’s union)

CS/COE 0449 – Spring 2019/2020 22

Many ducks lined up in a row

• An array is simply a continuous span of memory.

• You can declare an array on the stack:

• You can declare an array on the heap:

CS/COE 0449 – Spring 2019/2020
23

writing in a pedantic style, you
would write the cast here.

• You can initialize them depending on how they are allocated:

• You can initialize an array as it is allocated on the stack:

• And the heap (for values other than 0, you’ll need a loop):

Initialization

CS/COE 0449 – Spring 2019/2020
24Q: Why is using important here?

Carelessness means the Stack; Can stab you in the back!

• Remember: Variables declared on the stack are temporary.

• All arrays can be considered pointers, but addresses to the stack are
not reliable:

• This may work sometimes.
▪ However calling a new function will overwrite the array. Don’t trust it!!

• Instead: Allocate on the heap and pass in a buffer. (next slide)
CS/COE 0449 – Spring 2019/2020

25

Arrays are indeed just pointers! This is an address on the stack.

Stack deallocation (oh no!)

Stack allocation

— “A poem about betrayal” by wilkie

Appropriate use of arrays. Approp-array-te.

CS/COE 0449 – Spring 2019/2020
26Q: What happens if we pass 20 instead of 10 to powers_of_two?

Pointers can indeed be array-like!

Pointers allow for passing arguments “by reference”

Heap allocation!
Although we overwrite all values, using calloc to
initialize array elements to 0 reduces surprises.

Arrays don’t store length. Gotta pass it in.

Quick notes on function arguments, here…

• All arguments are passed “by value” in C.
▪ This means the values are copied into temporary space (the stack, usually)

when the functions are called.

▪ This means changing those values does not change their original sources.

• However, we can pass “by reference” indirectly using pointers:
▪ Similar to how you pass “by reference” in Java by using arrays.

CS/COE 0449 – Spring 2019/2020
27

The “value” of the argument is the address.

Careful! No guard rails… You might run off the edge…

• Since arrays are just pointers… and the length is not known…
▪ Accessing any element is correct regardless of actual intended length!

▪ No array bounds checking is the source of many very serious bugs!
• Can pull out and leak arbitrary memory.

• Can potentially cause the program to execute arbitrarily code.

CS/COE 0449 – Spring 2019/2020
28

A simple mistake, but it will gleefully write to it!

What if this is too big?

Pointer arithmetic (Warning: it’s wacky)

• Because pointers and arrays are essentially the same concept in C…
▪ Pointers have some strange interactions with math operations.

• Ideally pointers should “align” to their values in memory.
▪ Goal: Incrementing an pointer should go to the next in memory.

▪ That is, not part way between two values.

• Therefore, pointer sum is scaled to the element size.
▪ Multiplication and other operators are undefined and result in a compiler error.

CS/COE 0449 – Spring 2019/2020
29

Pointer arithmetic in practice:

CS/COE 0449 – Spring 2019/2020
30

The (postfix-increment) happens AFTER the dereference.
This is defined by the C language and is really confusing in practice.

(but you’ll see it. often.)

Alternative (and less common) way of expressing a pointer.

The C Memory Model: The Heap

• The Heap is the dynamic data section!
▪ You interact with the heap entirely with pointers.

▪ returns the address to the heap with at least
the number of bytes requested. Or on error.

CS/COE 0449 – Spring 2019/2020
31

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

Strings
No longer just for cats!

CS/COE 0449 – Spring 2019/2020 32

Strings

• They are arrays and, as such, inherit all their limitations/issues.
▪ The size is not stored.

▪ They are essentially just pointers to memory.

• Text is represented as an array of elements.

• Representing text is hard!!!
▪ Understatement of the dang century.

▪ Original ASCII is 7-bit, encodes Latin and Greek
• Hence being the C integer byte type.

▪ Extended for various locales haphazardly.
• 7-bits woefully inadequate for certain languages.

▪ Unicode mostly successfully unifies a variety of glyphs.
• Tens of thousands of different characters! More than a byte!!

CS/COE 0449 – Spring 2019/2020
33

How long is your string?

• Arrays in C are just pointers and as such do not store their length.
▪ They are simply continuous sections of memory!

▪ Up to you to figure out how long it is!
• Misreporting or assuming length is often a big source of bugs!

• So, there are two common ways of expressing length:
▪ Storing the length alongside the array.

▪ Storing a special value within the array to mark the end. (A sentinel value)

• Strings in C commonly employ a sentinel value.
▪ Such a valid must be something considered invalid for actual data.

▪ How do you know how long such an array is?
• You will have to search for the sentinel value! Incurring a 𝑂(𝑛) time cost.

CS/COE 0449 – Spring 2019/2020
34

The string literal.

• String literals should be familiar from Java.
▪ However, in C, they are pointers. (That is:)

▪ The contents of the literal are read-only (immutable) so it is a:
• Modifying it crashes your program!!

• A pointer that can’t change pointing to an immutable string is a

CS/COE 0449 – Spring 2019/2020
35

The variable is allocated on the stack,
which is a pointer. The string itself is
likely in the static data segment!

Let’s ignore this! ☺
(for now)

How long is your string? Let’s find out.

• The standard library function reports the length of a string.
▪ This is done in roughly 𝑂(𝑛) time as it must find the sentinel.

▪ The following code investigates and prints out the sentinel:

CS/COE 0449 – Spring 2019/2020
36

When good strings go bad.

• What happens if that sentinel… was not there?
▪ Well… it would keep counting garbage memory until it sees a 0.

CS/COE 0449 – Spring 2019/2020
37

The length here depends on the state of memory in the stack.

This syntax copies the string literal on to the stack.
This allows us to modify it. (otherwise, it is immutable)

Using stronger strings. A… rope… perhaps.

• To ensure that malicious input is less likely to be disastrous…
▪ We have alternative standard functions that set a maximum length.

CS/COE 0449 – Spring 2019/2020
38

strnlen will stop after the 12th character if it does not see a sentinel.

Comparing “Apples” to “Oranges”

• When you compare strings using it compares the addresses!
▪ Since string literals are constant, they only exist in the executable once.

▪ All references will refer to the same string!

CS/COE 0449 – Spring 2019/2020
39

Comparing “Apples” to “Oranges”

• When the addresses differ, they are not equal.
▪ So, you have to be careful when comparing them.

▪ This is similar to Java when considering versus

CS/COE 0449 – Spring 2019/2020
40

Comparing “Apples” to “Oranges”

• To compare values instead, use the standard library’s .
▪ This will perform a byte-by-byte comparison of the string.

• Upon finding a difference, it returns rough difference between those contrary bytes.

• When they are the same, then the difference is 0!

▪ Therefore, it is case sensitive! It also has a 𝑂 𝑛 time complexity.

CS/COE 0449 – Spring 2019/2020
41

will return 0 when the strings
are equal.

Appropriate string construction. A-rope-riate.

CS/COE 0449 – Spring 2019/2020
42

is the bounded form of .
Concatenates to end of existing string.

is the bounded form of .
Overwrites string.

is important here! Ensures string has
a length of 0. (is initially empty, not garbage!)

Like a ballroom. Empty, but spacious.

• C is a very deliberate language.

Memory/Strings: Summary

• Memory Allocation
▪

▪ Returns pointer to length bytes

▪ Returns pointer to (count*size) bytes, zeros them

▪ Deallocates memory at ‘ptr’ so it can be allocated elsewhere

• Strings
▪

▪ Copies src to dst overwriting dst.

▪ Copies up to ‘max’ to dst.

▪ Copies string from src to end of dst.

▪ Copies up to ‘max’ to end of dst.

▪ Returns difference between strings. (0 if equal)

▪ Compares up to ‘max’ bytes.

▪ Generally safer to use the bounded forms.
43

Input/Output: Summary

• Input
▪

▪ Copies string input by user into buffer (unsafe!)

▪ Copies up to 10 chars into buffer
(my_buffer needs to be >= 11 bytes for sentinel)

▪ Interprets input and places value into int variable.

• Output
▪

▪ Prints string. (technically unsafe)

▪ Prints up to 10 chars from string.
(safe as long as my_buffer is >= 10 bytes)

▪ Prints int variable. (d for decimal, unfortunately)

▪ Prints int variable in hexadecimal. (x for hex)

▪ Prints long variable.

▪ Prints unsigned long variable.

▪ Lots more variations! Generally and share terms. Look them up!

44

updates your variable, so you need to pass the address.
(does not need it. Strings are already)

Structures
It may not have class, but it has style.

CS/COE 0449 – Spring 2019/2020 45

Quick note on allocated structures…

• You are gonna allocate a lot of structures…
▪ They are big… you want them around… therefore, not good on the stack.

▪ You could make them globals… except when you want them dynamically.

CS/COE 0449 – Spring 2019/2020
46

Pointing to structure fields…

• A shorthand for is
▪ The “arrow” syntax works only on pointers and dereferences a field.

CS/COE 0449 – Spring 2019/2020
47

Pointing to structure fields…

• Recall that is what names types.
▪ If you want a data type, you can use to do so:

CS/COE 0449 – Spring 2019/2020
48

It took humanity thousands of years to discover the NULL pointer error.

• So, what do we use to denote that we are not pointing to anything?
▪ Same as Java… we use a Null value and we hope nobody dereferences it.

▪ It is not a built-in thing! We have to include to use it.

CS/COE 0449 – Spring 2019/2020
49

When malloc … goes bad

• When your request for memory cannot be made, malloc returns !
▪ In your perfect program, you would always check for this.

CS/COE 0449 – Spring 2019/2020
50

When malloc … goes bad
• You can check if is null with

▪ You might say, “hey! is not defined as by the C standard!”

▪ Yet, C specifically considers any pointer equal to to be a false value.
• Regardless of the value of which is usually anyway.

CS/COE 0449 – Spring 2019/2020
51

Examples
Some nice examples that address addressing!

CS/COE 0449 – Spring 2019/2020 52

Summing it all up.

CS/COE 0449 – Spring 2019/2020
53

Searching for values

CS/COE 0449 – Spring 2019/2020
54

Remember that wants pointers to data.

Paving a new path

CS/COE 0449 – Spring 2019/2020
55

Remember that wants pointers to data.

When it sees more than 20 characters… what
will it do? (What will the next call to do?)

Paving a new path (arbitrary number of directories!)

CS/COE 0449 – Spring 2019/2020
56

will resize the allocated space, copying the old
value to a new chunk of memory if necessary.

Look it up on your own!

