INTRODUCTION
TO MEMORY

CS/COE 0449
Introduction to

Systems Software

wilkie

(with content borrowed from Vinicius Petrucci

and Jarrett Billingsley)

THE MEMORY MODEL

If you forget how addressing works, | have a few pointers for you.

The C Memory Model

Potential Layout
 Memory is a continuous series of bits. (32-bit addresses)

= |t can be logically divided into bytes or words.

~ OXFFFFFFFF
* We will treat it as byte-addressable which — S—téic—I< —_—
means individual bytes can be read.
= This is not always the case!! currently unused but
= Consider masking and shifting to know the available memory
workaround!
* With byte-addressable memory, each and

every byte (8 bits) has its own unique address.
= |t's the place it lives!! Memory is JUST LIKE US!

= Address starts at O, second byte is at address 1, and code
increases (“upward”) as you add new data.

~ 0x00000000

The C Memory Model

Potential Layout
* There are two main parts of a program: (32-bit addresses)
codeand data

= “code” is sometimes called “text” ~ OxFFFFFFFF
___ stack __ __
* Where in memory should each go? }
= Should we interleave them? currently unused but
= Which do you think is usually largest? available memory
* How do we use memory dynamically?

= That is, only when we know we need it, in
the moment.

code

~ 0x00000000

The C Memory Model: Code

Potential Layout

* Code has a few known properties: (32-bit addresses)
= |t likely should not change.
= |t must be loaded before a program can start. ~ OxFFFFFFFF
- . __stack __ __
int my_static_var = 1; 1

.) _ currently unused but
int factorial(int n) { available memory

if (n <= 1) { return my_static_var; }
return n * factorial(n - 1);

}

void main(void) {
factorial(b5); code
} ~ 0x00000000

The C Memory Model: Static Data

. . , Potential Layout
« Static Data is an oft forgotten but useful section. (3(2)_;2 ;addfegzs)

= |t does change. (contrary to its name)
= |t generally must be loaded before a program starts. ~ @xFFFFFFFF
= The size of the data and section is fixed.

int my_static_var = 1; 00 _1_ 7000

.) _ currently unused but
int factorial(int n) { available memory

if (n <= 1) { return my_static_var; }
return n * factorial(n - 1);

}

void main(void) {
factorial(b5); code
} ~ 0x00000000

The C Memory Model: The Stack

. , Potential Layout
» The Stack is a space for temporary dynamic data. (33_;2 ;addfegzs)

= Holds local variables and function arguments.
= Allocated when functions are called. Freed on return. ~ QXFFFFFFFF
= Grows “downward”! (Allocates lower addresses)

| | | __ stack

int my_static_var = 1; |

. . . currently unused but

int factoriall(int n) available memory
if (n <= 1) { return static_var; }

return n * factoria - D;

Stack Allocation allows

recursion. However, the more
factorial(b5); you recurse, the more you

} use! (Stack is only freed on return) ~ 0x00000000

void main(vojyd) {

code

Revisiting our past troubles:

#include <stdio.h> // Gives us 'printf’ Shar é
#include <stdlib.h> // Gives us 'rand’ which returns a random-ish int &
voi fined_local() { @@

int x; 4. Stack Allocation (No initialization!) IME
) prantr("x = %d\nt, x); It reuses what is already there!!
void some_cal¢(int a) 2. Stack Allocation

a=a%2?ran . -a; 1804289383
} -4

846930886

int main(void) { -16

for (int i = @; i < 5; i++) {
some_calc(i * i); === 1 Function Call

undefined_local(); wm= 3. Function Call
h;

return 9;
Y Q: Hmm. Where is the value for ‘x’ coming from? Why?

The C Memory Model: The Heap

Potential Layout

* The Heap is the dynamic data section! (32-bit addresses)
= Managing this memory can be very complex.
= No garbage collection provided!! ~ OxFFFFFFFF
= We will revisit it in greater detail very soon.
° ! _ stack __ __
#include <stdlib.h> // For 'malloc’ |

currently unused but
available memory

void main(void) {
// 1 want 10 integers in my array.

// malloc returns the address in the
// heap. But, wait, what’s that x ??
int* data =|malloc(sizeof (int) * 10); code

~ 0x00000000

POINTERS

They point to things. They are not the things.

The “Memory Address” Variable Type

* In C, we have integer types, floating point types...
* Now we introduce our dedicated address type!

* A pointer is a specific variable type that holds a memory address.

* You can create a pointer that pointsto any address in memory.

* Furthermore, you can tell it what type of data it should interpret
that memory to be: Just place that * at the end.

int* my_integer_somewhere;
floatx hey_its_a_float;
struct Song* ah_our_trusty_song_type;

Interpreting Pointers: Basics

Memory
(32-bit addresses)

intx my_int

= 0x20000000 ~ OXFFFFFFFF

0xB804524C

float* my_float

= 0xB804524C:;
0x20000000

 Pointers can pointer to individual sections of
memory.

= They interpret whatever binary information is there.

~ 0x00000000

Interpreting Pointers: Hmm

intx my_int
= 0x20000000;

float* my_float
= 0x20000000;

 Pointers can refer to the same address as other
pointers just fine.
= They interpret whatever binary information is there.

Memory
(32-bit addresses)

~ OxFFFFFFFF

0xB804524C

0x20000000
42 or 0.1543e10(-8) ?

~ 0x00000000

Interpreting Pointers: A Signh of Trouble

intx my_int
= 0x20000000;

float* my_float
= 0x20000000;

* Without the pointer, allocated data may linger
forever without a way to reference it again!
= C does not manage freeing memory for you.

Memory
(32-bit addresses)

~ OxFFFFFFFF

Help I'm Lost! @

0x20000000
42 or 0.1543e10(-8) ?

~ 0x00000000

Dereferencing Pointers: A Star is Born

* So, we have some ambiguity in our language.

* If we have a variable that holds an address, normal operations
change the address not the valuereferenced by the pointer.

* We use the dereference operator (*)

intx dataptr = 0x00800000; // this address 1s arbitrary

dataptr = Oxffffffff; // Reassigns the ADDRESS
xdataptr = 42; // Reassigns the VALUE
int data = Oxc0@de; // Initializes a new variable

data = *dataptr; // Assigns VALUE from pointer

Dereferencing Pointers: A Star is Born

 Remember: C implicitly coerces whatever values you throw at it...

* Incorrectly assigning a value to an address or vice versa will be...
= ... Well ... It will be surprising to say the least.

* Generally, compilers will issue a warning.
= But warnings mean it still compiles!! (You should eliminate warnings in practice)

intx dataptr = 0x00800000; // this address 1s arbitrary

int* secondptr = dataptr; // Assigns ADDRESS
intx thirdptr = xdataptr; // VALUE casted to ADDRESS?

example.c:4:17: warning: initialization of 'int =*'
from 'int' makes pointer from integer without a cast

Referencing Data: An... &... is Born?

« Again... ambiguity. When do you want the address or the data?

* We can pull out the address to data and assign that to a pointer.
= Sometimes we refer to pointers as ‘references’ to data.

« We use the reference operator (&)

intx dataptr = 0x00800000; // this address 1s arbitrary
>

int data = @xc@de; &@"é& & // Initializes a new variable

dataptr = &data; << é&@\ // Assigns ADDRESS to pointer

*dataptr = 42; « ¢ // Assigns 42 to memory!

printf("%d\n", data); // Prints 42!

Turtles all the way down

int data = 42;
intx dataptr = &data; // store address of data

// polnter to a pointer of an int:
intx* dataptrptr = &dataptr; // store address of dataptr

// dereference dataptrptr... then dereference that...
*(*dataptrptr) = -64; // store VALUE into 'data’
v 9

Like skipping rocks on the lake...

int data = 42; // Initializes a new variable
intx dataptr = &data; // Assigns ADDRESS to pointer
printf("%d\n", data); // Prints 42!

printf("%d\n", *dataptr); // Prints 42!
printf("%p\n", dataptr); // Prints the ADDRESS of data
// However, 'data' could be ANYWHERE

—— q

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13
42 4

Cdata / \dataptr
X

Like skipping rocks on the lake...

int data = 42; // Initializes a new variable
intx dataptr = &data; // Assigns ADDRESS to pointer
intx* dataptrptr = &dataptr; 2

printf("%p\n", dataptr);

printf ("%p\n", dataptrptr);

printf ("%d\n", **xdataptrptr); // Prints "42"!

a s :

00 01 02 03 04 05 06 07 08 M oD OF m 11 12 13

42 4 A

Qdata /\{ataptr / R dataptrptr
* *

The C Memory Model: The Heap

Potential Layout

* The Heap is the dynamic data section! (32-bit addresses)
= You interact with the heap entirely with pointers.
= malloc returns the address to the heap with at least ~ OxFFFFFFFF
the number of bytes requested. Or NULL on error.
| stack __ __
#include <stdlib.h> // For 'malloc’ }

currently unused but
available memory

void main(void) {
// 1 want 10 integers in my array.

// malloc returns the address in the
// heap. WAIT, that’s an array??!?
int* data = malloc(sizeof(int) * 10); code

~ 0x00000000

ARRAYS

't is what all my fellow teachers desperately need: Arrays.
(Support your local teacher’s union)

Many ducks lined up in a row

* An array is simply a continuous span of memory.

* You can declare an array on the stack:
void main(void) {
int array[5]; // 5 integers... with garbage in them

}

* You can declare an array on the heap:
void main(void) {
// 5 integers... with garbage in them
intx array = (int*)malloc(sizeof(int) * 5);

} writing in a pedantic style, you
would write the cast here.

Initialization

* You can initialize them depending on how they are allocated:

* You can initialize an array as it is allocated on the stack:
voild main(void) { // Unspecified values default to 0:

int arrayl[5] = {1, 42, -33}; // [1, 42, -3, 0, 0]
¥

« And the heap (for values other than O, you'll need a loop):
void main(void) {
// 5 integers... ’'calloc’' sets the memory to 0.
intx array = (int*)calloc(5, sizeof(int));

}

Q: Why is using sizeof important here?

Carelessness means the Stack; Can stab you in the back!

— “A poem about betrayal” by wilkie

 Remember: Variables declared on the stack are temporary.

 All arrays can be considered pointers, but addresses to the stack are
not reliable:

int* powers_of_two(void) {
int arrayl[5] = {1, 2, 4, 8, 16};
return array; " Stack allocation

} \Arrays are indeed just pointers! This is an address on the stack.
\Stack deallocation (oh no!)

* This may work sometimes.
= However calling a new function will overwrite the array. Don’t trust it!!

* Instead: Allocate on the heap and pass in a buffer. (next slide)

Appropriate use of arrays. Approp-array-te.

#include <stddef.h> // For 'size_t'
#include <stdlib.h> // For 'malloc’, ’'calloc’, and 'free'’

#include <stdio.h> For 'printf’ iti
include <stdio // For "prin ’Arraysdon’tstore length. Gotta pass it in.

void powers_of_two(int* buffer, size_t length) {

int value = 1; Pointers allow for passing arguments “by reference”
for (int i = @; i < length; i++) {

buffer[i] = value;
value *= 2;

) \Pointers can indeed be array-like!

}

void main(void) {
intx buffer = calloc(10, sizeof(int));
powers_of_two(buffer, 10); \Heap allocation!

for (int 1 = 0; i < 10; i++) { . .
orintFC'%d\n” . buffer[i]): Although we overwrite all values, using calloc to

) initialize array elements to O reduces surprises.

free(buffer); // Make sure you free any memory you use!

Q: What happens if we pass 20 instead of 10 to powers_of_two?

Quick notes on function arguments, here...

 All arguments are passed “by value” in C.

= This means the values are copied into temporary space (the stack, usually)
when the functions are called.

= This means changing those values does not change their original sources.

« However, we can pass “by reference” indirectly using pointers:
= Similar to how you pass “by reference” in Java by using arrays.

void powers_of_two(int* buffer, size_t length) {

. B w
int value = 1; The “value” of the argument is the address.

for (int 1 = 0; 1 < length; 1++) {
buffer[i] = value; // Changes the value in the array.
value *x= 2;
3
3

Careful! No guard rails... You might run off the edge...

* Since arrays are just pointers... and the length is not known...
= Accessing any element is correct regardless of actual intended length!

= No array bounds checking is the source of many very serious bugs!
* Can pull out and leak arbitrary memory.
« Can potentially cause the program to execute arbitrarily code.’ What if this is too big?

volid powers_of_two(intx buffer, size_t length) {

int value = 1; ’A simple mistake, but it will gleefully write to it!
for (int 1 = @; 1 <= length; 1++) {
buffer[i] = value; // Does exactly what you say.
value *= 2;

Pointer arithmetic (Warning: it's wacky)

* Because pointers and arrays are essentially the same concept in C...
= Pointers have some strange interactions with math operations.

* ldeally pointers should “align” to their values in memory.
= Goal: Incrementing an int pointer should go to the next int in memory.
= That is, not part way between two int values.

* Therefore, pointer sum is scaled to the element size.
= Multiplication and other operators are undefined and result in a compiler error.

intx ptr = (1nt*x)0x400; // Arbitrary for illustration
ptr++; // ptr 1s 0x404 (assuming 32-bit int)
ptr x= 2; // Error: multiplication not valid!

Pointer arithmetic in practice:

#include <stddef.h> // For 'size_t'
#include <stdlib.h> // For 'malloc’, ’'calloc’, and 'free'’
#include <stdio.h> . . .
’Alternatlve (and less common) way of expressing a pointer.
void powers_of_two(int buffer[], size_t length) {

int value = 1;

for (int 1 = @; i < length; i++) { y
*buffer++ = value; // Assigns and then moves the pointer to the next item. .
value x= 2:% . .

) The ++ (postfix-increment) happens AFTER the dereference.

) This is defined by the C language and is really confusing in practice.

(but you'll see it. often.)
void main(void) {
intx buffer = calloc(10, sizeof(int));
powers_of_two(buffer, 10);
for (int 1 = 0; i < 10; i++) {
printf("%d\n", buffer[il]);
3

free(buffer); // Make sure you free any memory you use!

3

The C Memory Model: The Heap

Potential Layout

. . . _—
The Heap is the dynamic data section! (32-bit addresses)
= You interact with the heap entirely with pointers.
= malloc returns the address to the heap with at least ~ QxFFFFFFFF
the number of bytes requested. Or NULL on error.
____ stack __ __
#include <stdlib.h> // For 'malloc’ !
void main(void) { currently unused but
// I want 10 integers in my array. available memory
// malloc returns the address in the | _t
// heap. This can be used as an array. heap

int* data = malloc(sizeof(int) * 10);
datal[5] = 42;
free(data); // Good to free memory! code

J ~ 0x00000000

STRINGS

No longer just for cats!

e

* They are arrays and, as such, inherit all their limitations/issues.
= The size is not stored.
= They are essentially just pointers to memory.

* Text is represented as an array of char elements.

» Representing text is hard!!!
= Understatement of the dang century.

= Original ASClIl is 7-bit, encodes Latin and Greek Q
* Hence char being the C integer byte type. ‘—;ﬁ ‘
= Extended for various locales haphazardly. P ‘»),'_;
 7-bits woefully inadequate for certain languages. & ZJ/

= Unicode mostly successfully unifies a variety of glyphs.
* Tens of thousands of different characters! More than a byte!!

How long is your string?

* Arrays in C are just pointers and as such do not store their length.
= They are simply continuous sections of memory!

= Up to you to figure out how long it is!
* Misreporting or assuming length is often a big source of bugs!

* So, there are two common ways of expressing length:
= Storing the length alongside the array.
= Storing a special value within the array to mark the end. (A sentinel value)

* Strings in C commonly employ a sentinel value.
= Such a valid must be something considered invalid for actual data.

= How do you know how long such an array is?
* You will have to search for the sentinel value! Incurring a O(n) time cost.

The string literal.

* String literals should be familiar from Java.
= However, in C, they are char pointers. (That is: charx)

= The contents of the literal are read-only (immutable) so it is a: const charx
* Modifying it crashes your program!!
« A pointer that can’t change pointing to an immutable string is a const charx const .
. ! . w
#include <stdio.h> // For 'printf’ Let’s ignore this! ©
(for now)

void main(void) {
// You could specify it as: char my_string[] = "...";
// But that would allocate the string on the stack!
const charx my_string = "Hello World.";

- n n h \
printf("%s\n", my_string); The variable is allocated on the stack,
) which is a pointer. The string itself is
likely in the static data segment!

How long is your string? Let’s find out.

 The strlen standard library function reports the length of a string.
= This is done in roughly O(n) time as it must find the sentinel.
= The following code investigates and prints out the sentinel:

#include <stdio.h> // For 'printf’
#include <string.h> // For 'strlen’

void main(void) {
const char* my_string = "Hello World.";
int length = strlen(my_string);
printf("length: %d\n", length);
printf("sentinel: %x\n", my_string[lengthl]);

When good strings go bad.

* What happens if that sentinel... was not there?
= Well... it would keep counting garbage memory until it sees a O.

#include <stdio.h> // For 'printf’
#include <string.h> // For 'strlen’
This syntax copies the string literal on to the stack.
void main(void) { . This allows us to modify it. (otherwise, it is immutable)
char my_string[] = "Hello World.";
int length = strlen(my_string);
my_stringllength] = 42; // Corrupt the sentinel
length = strlen(my_string); // Uh oh.
} KThe length here depends on the state of memory in the stack.

Using stronger strings. A... rope... perhaps.

* To ensure that malicious input is less likely to be disastrous...
= We have alternative standard functions that set a maximum length.

#include <stdio.h> // For 'printf’
#include <string.h> // For 'strnlen’

void main(void) {
char my_string[] = "Hello World.";
int length = strlen(my_string);
my_string[length] = 42; // Corrupt the sentinel
length = strnlen(my_string, 12); // That's fine.

w
} strnlen will stop after the 12t character if it does not see a sentinel.

Comparing “Apples” to “Oranges”

 When you compare strings using == it compares the addresses!
= Since string literals are constant, they only exist in the executable once.
= All references will refer to the same string!

#include <stdio.h> // For 'printf’
#include <string.h> // For 'strncmp'’

void main(void) {
char* stringl = "apples”;
char* string2 = "apples”;

if (stringl == string2) {
printf("same\n"); // This runs!
)
)

Comparing “Apples” to “Oranges”

* When the addresses differ, they are not equal.
= So, you have to be careful when comparing them.

= This is similar to Java when considering == versus String.equals()

#include <stdio.h> // For 'printf’
#include <string.h> // For 'strncmp'’

void main(void) {
char string1[] = "apples”;
char string2[] = "apples”;

if (stringl == string2) {
printf("same\n"); // This does not

}
}

run!

Comparing “Apples” to “Oranges”

« To compare values instead, use the standard library’s strcmp.

= This will perform a byte-by-byte comparison of the string.
* Upon finding a difference, it returns rough difference between those contrary bytes.
* When they are the same, then the difference is O!

= Therefore, it is case sensitive! It also has a 0(n) time complexity.

#include <stdio.h> // For 'printf’
#include <string.h> // For 'strncmp'’

void main(void) {

char* stringl = "apples”;
charx string2 = "apples”;
» strcmp will return 0 when the strings
if (strcmp(stringl, string2) == 0) { are equal.
printf("same\n"); // This runs!
by

} // You could write it as: if(!strcmp(stringl, string2))

Appropriate string construction. A-rope-riate.

#include <stdio.h> // For 'printf’' and 'scanf’ . .
#include <string.h> // For 'strnlen’ etc * Cis a very deliberate language.

#include <stdlib.h> // For 'calloc' and 'free’
#tdefine MAX_STRING 100

void main(void) { calloc is important here! Ensures string has
const charx str_start = "Hello, ": P a length of 0. (is initially empty, not garbage!)

const char* str_end = "!"; . .
char* str_name = calloc(MAX_STRING + 1, sizeof(char)); Like a ballroom. Empty, but spacious.
char*x my_buffer = calloc(MAX_STRING + 1, sizeof(char));

’

printf("Type in your name: "); // Let someone type in their name
scanf ("%100s", str_name); // The term %100s has it record at most 100 characters to str_name.
» Strncpy is the bounded form of strcpy.

strncpy(my_buffer, str_start, MAX_STRING);
strncat(my_buffer, str_name, MAX_STRING);
strncat(my_buffer, str_end, MAX_STRING);
printf("%s\n", my_buffer);

Overwrites string.

strncat is the bounded form of strcat.
Concatenates to end of existing string.

free(str_name);
free(my_buffer);
} // Prints "Hello, wilkie!"” depending on what you’ve typed in.

Memory/Strings: Summary

* Memory Allocation
= #include <stdlib.h>
" malloc(size_t length) Returns pointer to length bytes
= calloc(size_t count, size_t size) Returns pointer to (count*size) bytes, zeros them
= free(void* ptr) Deallocates memory at ‘ptr’ so it can be allocated elsewhere

* Strings
= #include <string.h>
= strcpy(charx dst, const charx* src) Copies src to dst overwriting dst.
= strncpy(char* dst, const char*x src, size_t max) Copiesup to ‘max’ to dst.
= strcat(charx dst, const charx* src) Copies string from src to end of dst.
= strncat(char* dst, const charx src, size_t max) Copies up to ‘max’to end of dst.
= strcmp(const char* a, const char* b) Returns difference between strings. (O if equal)
= strncmp(const char* a, const char* b, size_t max) Compares up to ‘max’ bytes.

Generally safer to use the bounded forms.

Input/Output: Summary

* Input
= #include <stdio.h>
= scanf ("%s", my_buffer) Copies string input by user into buffer (unsafe!)

= scanf ("%10s"”, my_buffer) Copiesup to 10 chars into buffer _
(my_buffer needs to be >= 11 bytes for sentinel)

= scanf ("%d", &my_int) Interprets input and places value into int variable.

- Output \scanf updates your variable, so you need to pass the address.
s #include <stdio.h> (my_buffer does not need it. Strings are already charx)

= printf ("%s"”, my_buffer) Prints string. (technically unsafe)

printf("%10s"”, my_buffer) Prints up to 10 chars from string.
(safe as long as my_buffer is >=10 bytes)

printf ("%d"”, my_int) Printsint variable. (d for decimal, unfortunately)
printf ("%x", my_int) Printsint variable in hexadecimal. (x for hex)
printf("%1l", my_int) Printslong variable.

printf("%ul”, my_int) Prints unsigned long variable.

Lots more variations! Generally scanf and printf share terms. Look them up!

STRUCTURES

It may not have class, but it has style.

e

Quick note on allocated structures...

* You are gonna allocate a lot of structures...
= They are big... you want them around... therefore, not good on the stack.
= You could make them globals... except when you want them dynamically.

#include <stdlib.h> // For 'calloc'

struct Song {
int lengthInSeconds;
int yearRecorded;

15

void main(void) {
struct Song* p_song = calloc(1, sizeof(struct Song));
(*p_song) .lengthInSeconds = 248;
(*p_song) .yearRecorded = 2011;
free(p_song); // Remember to free data when you are done!

3

Pointing to structure fields...

* A shorthand for (*p_song).field is p_song->field
= The “arrow” syntax works only on struct pointers and dereferences a field.

#include <stdlib.h> // For 'calloc'

struct Song {
int lengthInSeconds;
int yearRecorded;

15

void main(void) {
struct Song* p_song = calloc(1, sizeof(struct Song));
p_song->lengthInSeconds = 248; // Compare with last slide.
p_song->yearRecorded = 2011;
free(p_song); // Remember to free data when you are done!

Pointing to structure fields...

* Recall that typedef is what names types.
= |f you want a Song data type, you can use typedef to do so:

#include <stdlib.h> // For 'calloc'

typedef struct _Song {
int lengthInSeconds;
int yearRecorded;

} Song;

void main(void) {
Song* p_song = calloc(1, sizeof(Song)); // Compare with last slide.
p_song->lengthInSeconds = 248;
p_song->yearRecorded = 2011;
free(p_song); // Remember to free data when you are done!

It took humanity thousands of years to discover the NULL pointer error.

* So, what do we use to denote that we are not pointing to anything?
= Same as Java... we use a Null value and we hope nobody dereferences it.
= |t is not a built-in thing! We have to include stddef.h to use it.

#include <stdlib.h> // For 'free'
#include <stddef.h> // For 'NULL'

typedef struct _Song {
int lengthInSeconds;
int yearRecorded;

} Song;

void main(void) {
Song* p_song = NULL;
p_song->lengthInSeconds = 248; // Uh oh.
free(p_song); // Can’t free nothing...
3

// Segmentation fault (core dumped)

When malloc ... goes bad

* When your request for memory cannot be made, malloc returns NULL!
= |n your perfect program, you would always check for this.

#include <stdlib.h> // For 'calloc'
#include <stdio.h> // For 'printf’
#include <stddef.h> // For 'NULL'

typedef struct _Song {
int lengthInSeconds;
int yearRecorded;

} Song;

void main(void) {
Song* p_song = malloc(sizeof(Song));
if (p_song == NULL) {
printf("cannot allocate memory!\n");
3
b

When malloc ... goes bad

* You can check if ptr is null with if(!ptr)
= You might say, “hey! NULL is not defined as @ by the C standard!”

= Yet, C specifically considers any pointer equal to NULL to be a false value.
* Regardless of the value of NULL which is usually (void*)@ anyway.

#include <stdlib.h> // For 'calloc'
#include <stdio.h> // For 'printf’
#include <stddef.h> // For 'NULL'

typedef struct _Song {
int lengthInSeconds;
int yearRecorded;

} Song;

void main(void) {
Song* p_song = malloc(sizeof(Song));
if (!p_song) { // Alternative (works with modern C just fine)
printf(”"cannot allocate memory!\n");
b
b

EXAMPLES

Some nice examples that address addressing!

Summing it all up.

#include <stdio.h> // For 'printf' and 'scanf’
#include <stdlib.h> // For 'calloc’' and 'free’

void main(void) {
int sum = 0;
intx my_array = calloc(5, sizeof(int));

for (int i = @; i < 5; i++) {
printf("Enter a number: ");
scanf("%d", &my_array[il);

}

for (int 1 =0; 1 <5; i++) {
sum += my_array[i];

}

free(my_array);

printf("The sum of all numbers is: %d\n", sum);

Searching for values

#include <stdio.h> // For 'printf’ and 'scanf’
#include <stdlib.h> // For 'calloc' and 'free’
#include <limits.h> // For INT_MIN and INT_MAX

void main(void) {
int min = INT_MAX, max = INT_MIN;
int* my_array = calloc(5, sizeof(int));

for (int i = 0; i <5; i++) {
printf("Enter a number: ");
scanf("%d"”, &my_array[il);

Remember that scanf wants pointers to data.
for (int i = 0; i < 5; i++) {
if (my_array[i] < min) {
min = my_array[i];
}
if (my_array[i] > max) {
max = my_array[il;

free(my_array);

printf("The min is: %d and max is: %d\n”, min, max);

Paving a new path

#include <stdio.h> // For 'printf' and 'scanf’
#include <string.h> // For string routines
#include <stdlib.h> // For 'calloc’' and 'free’

void main(void) {
char* my_input = calloc(21, sizeof(char));
char*x my_path = calloc(106, sizeof(char));
strcpy(my_path, "/");

for (int 1 = 0; 1 < 5; i++) {
printf("Enter a directory name: ");
scanf ("%20s", my_input);
strcat(my_path, my_input);” Remember that scanf wants pointers to data.

strcat(my_path, "/");

f}:ree (ny_input) When it sees more than 20 characters... what
will it do? (What will the next call to scanf do?)

// Remove tailing slash!
my_path[strlen(my_path) - 1] = "\o’;

printf("The path you have built is: %s\n”, my_path);
free(my_path);

Paving a new path (arbitrary number of directories!)

#include <stdio.h> // For 'printf' and 'scanf’
#include <string.h> // For string routines
#include <stdlib.h> // For ’'calloc’ 'realloc’ and ’'free’

void main(void) {
int buffer_size = 20;
charx my_input = calloc(21, sizeof(char));
charx my_path = calloc(buffer_size, sizeof(char));

do {
printf("Enter a directory name ('stop’ will stop): ");
scanf ("%20s", my_input);
if (strlen(my_input) + strlen(my_path) + 1 > buffer_size) {
printf("reallocating buffer!\n");
buffer_size += 20;
my_path = realloc(my_path, buffer_size);

} \ [] [] []
if (stremp(my_input, "stop”y) ¢ realloc will resize the allocated space, copying the old
strcat(my_path, "/"); value to a new chunk of memory if necessary.
strcat(my_path, my_input);
)
} while(stremp(my_input, "stop”)); LOOk it up on your Own!

free(my_input);

printf("The path you have built is: %s\n", my_path);
free(my_path);

