
Spring 2019/2020

CS/COE 0449
Introduction to

Systems SoftwareManagement

6

Memory

wilkie
(with content borrowed from Vinicius Petrucci

and Jarrett Billingsley)

Our Story So Far
You Hear a Voice Whisper: “The Memory Layout is a Lie”

CS/COE 0449 – Spring 2019/2020 2

Reallocating our thoughts

• A program has several sections:
▪ Code

▪ Static data

▪ Stack

▪ Heap

• Today, we take a deeper dive at how
dynamic memory is allocated in the heap.

CS/COE 0449 – Spring 2019/2020
3

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

Reallocating our thoughts

• We have looked at and .

• They stake out space in the heap and
return an address.

• Right now, we live in a nice ideal world.
▪ No other programs are running.

▪ We have access to all of the memory.
• Muhahahaha!!

• The OS is lying to our program.
▪ This memory is… virtual... reality.

▪ We will investigate this lie later in the course.

CS/COE 0449 – Spring 2019/2020
4

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

The World of Allocation
It is a puzzle without any optimal solution. Welcome to computers!

CS/COE 0449 – Spring 2019/2020 5

A heap of possibilities

• Stack access often does not deviate much.
▪ We allocate a little bit at a time.

▪ We allocate and free the memory VERY often.

• Heap allocations have many access
patterns that are possible.
▪ You might allocate a lot at a time and keep it

around for a long time. Or a short time.

▪ You might allocate a lot of small things, instead.

▪ Maybe you do a little bit of everything?

• Often, such patterns are not easy to
predict.
▪ Do you get a big file as input? A small file?

CS/COE 0449 – Spring 2019/2020
6

currently unused but
available memory

code

static data

heap

stack

Potential Layout
(32-bit addresses)

available memory
available memory
available memory

A heaping helping of good luck

• Allocations could happen in a nice order.

• When something is allocated, it can be
allocated after everything else.

• When freed, it makes room for new things.

• IF ONLY.
▪ I mean, it’s possible… but like…

• the heap and stack are different things for a reason.

CS/COE 0449 – Spring 2019/2020
7

code
static data

heap

stack

available memory
available memory
available memoryavailable memory

Digital potholes… as annoying as real ones

• Small allocations interfere with large ones.

• When small gaps interfere with allocation,
this is called fragmentation.

CS/COE 0449 – Spring 2019/2020
8

available memory

available memory

code
static data

heap

stack

?
Next

Allocation

U
g

h

if we had omniscience of future
allocations, we could avoid this…
but we can’t know ahead of time!

The worst case

• When you allocate a lot of small things…
▪ Free every other one…

▪ And then attempt to allocate a bigger thing…

• Even though there is technically enough
memory…
▪ There is no continuous space.

▪ Therefore, our naïve will fail.

• We have to come up with some strategy.

CS/COE 0449 – Spring 2019/2020
9

code
static data

heap

stack

? ? ?

Moving is never easy

• Why not move things around??
▪ A defragmentation process/algorithm

• Moving around something in the heap is hard!
▪ Any pointers referring to data within a block must

be updated.

▪ Finding these pointers automatically is effectively
as difficult as garbage collection.

• Because of this, moving blocks around is
discouraged. (Easier to solve it another way.)

CS/COE 0449 – Spring 2019/2020
10

code
static data

heap

stack

? ? ?

Moving is NEVER easy

• When blocks move, pointers
to anything within them must be updated.

• This is hard to keep track of!
▪ C does not check validity of pointers after

11

available memory

code
static data

heap

stack

CS/COE 0449 – Spring 2019/2020

old data: int arr[100]

Stressing it out

• If we allocate a large array it will be allocated
on the heap somewhere.

• Other allocations can also happen, and they go
“above” that array.

• What happens when you need to append a
101st element to this array?
▪ Uh oh!

• You will need to allocate more space.
▪ And then copy the array contents.

▪ Free the old array.

▪ How long does that take?
12

available memory

heap

stack

int arr[100]

CS/COE 0449 – Spring 2019/2020

int arr[200]

fragmentation

old data: int arr[100]

Stressing it out: Big Arrays

• This happens in very practical situations!
▪ Reallocating means getting rid of a small thing

▪ And replacing it with a larger thing.

▪ You could have TiBs of memory and this will be a
problem.

• This affects performance: (in terms of writes:)
▪ Appending item arr[0]: 𝑂 1

▪ Appending item arr[1]: 𝑂 1

▪ …

▪ Appending item arr[99]: 𝑂 1

▪ Appending item arr[100]: 𝑂 𝑛 + 1 oh no!

• When you would overflow the buffer…
▪ You then need to copy all previous values as well.

13

available memory

heap

stack

int arr[100]

CS/COE 0449 – Spring 2019/2020

old data: int arr[100]

Stressing it out: Performance Consistency

• Big arrays want to be continuous.
▪ Ensuring continuous space is difficult when you do

not know how much you will ultimately need.

• This is exactly why linked lists exist!

• Since a linked list allocates on every append.
▪ Each append takes the same amount of time.

• However, everything is a trade-off.
▪ Dang it!!!

▪ One cost is extra overhead for metadata.

▪ Linked list traversal can stress memory caches.
• It means traversing the array is slower.

• However, we will mostly ignore this for now.
14

available memory

heap

stack

int arr[100]

CS/COE 0449 – Spring 2019/2020

The Linked List
A story about trade-offs.

CS/COE 0449 – Spring 2019/2020 15

What is a linked list?

• A linked list is a non-continuous data structure representing an
ordered list.

• Each item in the linked list is represented by metadata called a node.
▪ This metadata indirectly refers to the actual data.

▪ Furthermore, it indirectly refers to at least one other item in the list.

CS/COE 0449 – Spring 2019/2020
16

Node

“struct” required since
Node is not technically
defined until after it is
defined!

Keeping ahead of the list.

• Creation of a list occurs when one allocates a single node and tracks
it in a pointer. This is the head of our list (first element.)

CS/COE 0449 – Spring 2019/2020
17

Node

Adding some links to our chain

• If we want to append an item, we can add a node anywhere!

CS/COE 0449 – Spring 2019/2020
18

“tail” “node”

Remember the
‘\0’ sentinel!

We can add them anywhere!!

• Consider what happens if we update our append to take any Node:

CS/COE 0449 – Spring 2019/2020
19

“curNode” Tail“node”

We can add them anywhere!!

• This function has very consistent performance (constant time):

• The append always allocates the same amount.

• It always copies the same amount.

• Compare to a big array where you may have to copy the entire
thing to append something new!

Traversal… on the other hand…

• Accessing an array element is generally very simple.
▪ is the same as because its location is very well-known!

▪ This is because array items are continuous in memory. Not true for linked lists!

• Here is a function that performs the equivalent for linked lists:

CS/COE 0449 – Spring 2019/2020
21Q: How many times is memory accessed relative to the requested index?

Removing… on the other, other hand!

• One nice thing about linked
lists is their flexibility to
changing shape.
▪ I used to be able to bend a lot

better, too, when I was in my
20s. Alas.

• Since we don’t have a way to
go “backward”
▪ We first find the node we want

to delete ()

▪ Keeping track of the node of
– ()

▪ Rewire to cut out
.

CS/COE 0449 – Spring 2019/2020
22Returns new head (or old head if unchanged).

Can’t find item at index.

We are deleting the head.

Removing… on the other, other hand!

• This looks complex, but it
really is a simple traversal.
▪ So it takes 𝑂 𝑛 to find the item.

▪ And it performs a simple update
and deallocation. (quick to do)

• A big array, on the other hand.
▪ It can find the element to

remove immediately.

▪ However, removing it means
shifting over every item after it
left.

▪ That can be an expensive
update! (Memory is slow!!)

CS/COE 0449 – Spring 2019/2020
23

On your own!

Think about the code you would need to do any of the following:

• Delete/free the entire linked list.

• Sort a linked list.

• Append a linked list to an existing one.

• Copy a subset of a linked list to a new list.

Often, operations can be abstracted in such a way that all of these
can be written relatively simply.

Consider the performance of these operations compared to an Array.

CS/COE 0449 – Spring 2019/2020
24

Linked lists … link you … to the world!

• Consider how much cleaner you can make certain operations if you
tracked the previous node as well.
▪ This is a doubly linked list.

▪ This is typically “double-ended” as well: keeping track of both head and tail.

CS/COE 0449 – Spring 2019/2020
25

NodeNode Node

Seeing the trees through the forest

• A binary tree can be represented by the same nodes as a linked list.
▪ In this case, you have a left and right child node instead of next and prev.

• The operations are
very different, though.

CS/COE 0449 – Spring 2019/2020
26

Node

Node

Node

Node

De-Stressing it out: Linked Lists

• We know big arrays want to be continuous.
▪ However, ensuring continuous space is difficult

when you do not know how much you will
ultimately need.

• Linked lists allocate very small chunks of
metadata.
▪ These chunks can be allocated easily on-demand.

▪ And then deallocated without creating wide gaps.

• This reduces fragmentation.
▪ Deallocating always leaves a small amount of room.

▪ It is always the exact amount needed to append!

▪ However, it is all at the expense of complexity!

▪ And traversal can be expensive (but we can find
ways to deal with that.) 27

available memory

heap

stack

CS/COE 0449 – Spring 2019/2020

some other data

Implementing Malloc
It really sounds like some kind of He-Man or She-Ra villain of the week.

CS/COE 0449 – Spring 2019/2020 28

The malloc essentials

• The function does the
following:
▪ Allocates memory of at least bytes.

▪ Returns the address to that block of memory (or
on error)

• Essentially, your program has a potentially
large chunk of memory.
▪ The function tears off a piece of the chunk.

▪ Also must then allow that chunk to be reused.

▪ The job of is to do so in the “best” way to
reduce fragmentation.

CS/COE 0449 – Spring 2019/2020
29

We want to avoid fragmentation

available memory

stack

Choosing where to allocate

• Our first problem is, when is called,
where do we tear off a chunk?

• We can do a few simple things:
▪ First-Fit: start at lowest address, find first available

section.
• Fast, but small blocks clog up the works.

▪ Next-fit: Do “First-Fit” but start where we last
allocated.
• Fast and spreads small blocks around a little better.

▪ Best-Fit: laboriously look for the smallest available
section to divide up.
• Slow, but limits fragmentation.

30

available memory

stack

CS/COE 0449 – Spring 2019/2020

Last Allocated

? ? ?

Managing that metadata!

• You have a whole section of memory to divide up.

• You need to keep track of what is allocated and what is free.

• One of the least complicated ways of doing so is to use… hmm…
▪ A linked list! (or two!) We know how to do this!!

• We can treat each allocated block (and each empty space) as a node
in a linked list.
▪ Allocating memory is just appending a node to our list.

• The trick is to think about how we want to split up the nodes
representing available memory.

CS/COE 0449 – Spring 2019/2020
31

Tracking memory: Our fresh new world.

• Let’s orient our memory visually horizontally.
▪ We have control over EVERY byte of it. We can place metadata ANYWHERE.

• Every is responsible for allocating a block of memory.
▪ How, then, do we manage where things are allocated and where is empty space?

▪ We can have “allocation” reduce to creating a new node in a linked list.

CS/COE 0449 – Spring 2019/2020
32

available memory

We have the power to write data ANYWHERE!
So where do linked list nodes go?

Linked lists are our friend, here

• We will augment our normal doubly linked list to be useful for tracking
the size of the block it represents. (an explicit list allocator)

• Here, we will maintain a single linked lists of all allocated or free blocks.
▪ The size field denotes how big the block is (how much is used/available.)

▪ We need to know when a block represents allocated space or if it is free.

▪ Hmm… we could use a single bit to denote that. Or… negativity!
• The is NEVER . In fact, fails when requesting size of .

CS/COE 0449 – Spring 2019/2020
33

AllocNode

We can make other clever
space optimizations, but we
will start with this. Signed! Negative number

means a free block.

Tracking memory: High level metadata

• We can keep track of used/empty spaces cheaply by having linked list
nodes at the beginning of them. The nodes track the size of the space.
▪ Here we have an allocated block followed by a free and then allocated block.

▪ The metadata for the linked list is just smashed into the block itself.

CS/COE 0449 – Spring 2019/2020
34

available memory

Q: What happens when we write over the block boundary?

Implementing

• To allocate some amount of space, we find a free block that is at least
that size + metadata size. (Which one? Well, first-fit and friends apply!)
▪ Then we will want to split that free block.

CS/COE 0449 – Spring 2019/2020
35

x x x

available memory

Implementing
• Allocating means finding a

free block big enough.
▪ Including the metadata size.

• Then splitting it into a used
block and a smaller free block.

• This is incomplete. (Why?)
• (you don’t always split)

CS/COE 0449 – Spring 2019/2020
36Q: This is first-fit. What should be added to implement next-fit? Best-fit?

Linked list traversal; 𝑂(𝑛)

Recall that we made size
negative for a free block.

is negative.
Positive means non-free.

Carefully negate size

Linked list append; 𝑂(1)

Think about it!

Implementing

• When freeing the middle block, you will create empty space.

• Consider allocations… it’s somewhat difficult to see the empty space.
▪ You have “false fragmentation,” so you will want to merge adjacent free blocks.

CS/COE 0449 – Spring 2019/2020
37

available memory

Implementing

• So, when we free blocks, we look to the left. We look to the right.
▪ We coalesce the newly free block with ANY adjacent free blocks.

▪ First one…

▪ Then the other. (And it is linked list node removal; a constant time operation!)

CS/COE 0449 – Spring 2019/2020
38

available memory

Implementing

• Finding the header metadata
node is simple.
▪ Look at our ’s .

• is slightly less complex.
▪ It does not have to search.

• Where splits nodes
▪ merges them.

• Whenever a block is freed
next to an existing one…
▪ It should merge them!

• Consider how much a doubly
linked list helped.

CS/COE 0449 – Spring 2019/2020
39

Header is just before ptr

Resembles linked list
delete; 𝑂(1)

However it subtracts from size
(which makes reflect a larger space)

Q: Are any changes required here for best-fit?

Thinking about next-fit

• With a typical first-fit version of the malloc function…
▪ We can now consider simple improvements.

▪ Traversing the list is expensive! 𝑂 𝑛 !

• Next-fit helps because we start from the last allocated item.
▪ Generally, what do you think comes after the last allocated item.

▪ Consider the normal operation…
• It splits the node and creates free space.

• Therefore, seems likely free space will exist near the last allocation.
▪ Perhaps causing the average case for malloc to bias itself toward 𝑂(1)

▪ However, all strategies have their own worst-case!!
• Think about what that might be.

CS/COE 0449 – Spring 2019/2020
40

Thinking about best-fit

• Best-fit, on the other hand, is not about avoiding traversal.
▪ Instead, we focus on fragmentation.

• Allocating anywhere means worst-case behavior splits nodes poorly.
▪ If we find a PERFECT fit, we remove fragmentation.

• Traversal is still bad… and we brute force the search...
▪ But, hey, solve one problem, cause another. That’s systems!

▪ Fragmentation may indeed be a major issue on small memory systems.

• What is the best of both worlds? Next-fit + Best-fit?
▪ Hmm.

▪ Works best if you keep large areas open.

CS/COE 0449 – Spring 2019/2020
41

Other thoughts

• Don’t need pointers since adding size to the block’s address will
also move there. (unusually, the linked list is always ordered!)

• You don’t need to keep the used blocks in the list.
▪ More complex to understand but removes implementation complexity.

▪ Free nodes point to the next and previous free nodes. Used nodes point to
their neighbors. Traversal is improved since it only visits free nodes; still 𝑂(𝑛)

• The idea is to only keep track of necessary metadata.
▪ You only coalesce when free blocks are adjacent.

▪ With a list of only free blocks, you can easily tell when that condition is met…
• just see if is the same address as

• The only other concern is getting from a used block you want to free
to its neighboring free block. So those have normal pointers.

CS/COE 0449 – Spring 2019/2020
42

Explicit free lists: giving you VIP access

• When you allocate, you go through the free list.
▪ You don’t care about allocated nodes.

• When you free, you only care about coalescing neighbors.

CS/COE 0449 – Spring 2019/2020
43

available memory

Q: Do free nodes need a pointer?

Trees are your buddy

• Recall that we easily took the ideas around linked lists and made
binary trees.

• You can manage memory with a binary tree as well.

• This is called a buddy allocator.

CS/COE 0449 – Spring 2019/2020
45

Divide and conquer
• Buddy allocators divide memory into halves that are powers of two.

▪ Can cause internal fragmentation

CS/COE 0449 – Spring 2019/2020
46

Allocation is not a power of two: internal fragmentation

▪ The total memory, , is a
power of two.

▪ Each split is, then, also a
power of two.

Allocating with trees
• Assuming is , and we allocate 242MiB:

▪ We travel left until we find a block
that fits.

CS/COE 0449 – Spring 2019/2020
47

▪ We travel back up when we can’t go
further left and go right.

▪ When we find a
unsplit node that
fits, we allocate
there.

Burying the hatchet: Chopping the trees
• Let’s allocate 64MiB. So nice, we will allocate it twice.

▪ Again a depth-first search to find
the first unsplit node that fits us.

CS/COE 0449 – Spring 2019/2020
48

▪ This node is fine! Allocate that!

▪ When we find a
unsplit node that is
too big, we split in
half and keep going.

▪ Do it again!

Coalescing friendships (animated)
• Coalescing happens because every block has a buddy!

▪ When both sides of a split node
are free, coalesce them!

CS/COE 0449 – Spring 2019/2020
49

▪ If this keeps happening, it will
coalesce larger spaces.

▪ Repeating as
much as
necessary.

xx x

Thinking like an arborist (but only if you are feeling listless)

• How does a tree-based
allocation system deal
with fragmentation?

• What are some
immediate drawbacks
from using a tree
scheme?

CS/COE 0449 – Spring 2019/2020
50

available
memory

• Can you imagine a
possibility of using a
hybrid approach?

Lies and Damned Lies!
• Does your program actually own all of memory?

▪ On modern systems, absolutely heckin not.

• Your program still has to request memory allocations from the OS.
▪ Generally, takes on this responsibility behind the scenes.

▪ In Linux, you request pages in the normal heap in LIFO order with .

▪ Or, you request specific virtual memory pages with .

• What is a segmentation fault.
▪ Segments are the “code”, “data”, “heap” separation. You fault by doing

something the segment does not allow. (write to read-only memory)

▪ A historic misnomer since we actually have paging, not segmented memory.

• What is a “page”? Virtual memory??
▪ It replaced segments and is part of the much grander lie about sharing

memory with multiple applications at the same time. More on this later!
CS/COE 0449 – Spring 2019/2020

51

I want to know MORE

• If you find this topic interesting, it is a WIDE area of research.

• Malloc is generally more complex or specialized these days than the
options here.
▪ Or some kind of hybrid, as the need arises.

• The Linux kernel makes use of a Slab Allocator
▪ https://en.wikipedia.org/wiki/Slab_allocation

• Modern C (glibc) uses a hybrid malloc:
▪ https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html

• Professor Knuth has written about several classic algorithms.
▪ Buddy Allocation comes from the 60s. Groovy.

CS/COE 0449 – Spring 2019/2020
52

https://en.wikipedia.org/wiki/Slab_allocation
https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html

