
Introduction

Spring 2019/2020

wilkie
(with content borrowed from Vinicius Petrucci

and Jarrett Billingsley)

CS/COE 0449
Introduction to

Systems Softwareto x86 asm

7

Assembly Refresher
What is forgotten… is art.

CS/COE 0449 – Spring 2019/2020 2

What is “Assembly”

• Assembly: Human-readable representation of machine code.

• Machine code: what a computer actually runs.

• The “atoms” that make up a program.
▪ CPUs are actually fairly simple in concept.

▪ (Yet we have an entire semester to fill, hmm)

• Each CPU chooses its own machine code (and therefore its own
style of assembly language)

• We used MIPS in CS 447.
▪ A RISC processor.

• We will compare that to x86 today!
▪ A CISC processor.

3

What is “Assembly”

• Involves very simple commands.

• This command copies data from
one place to another.
▪ Despite being called “move”, ugh!

• Surprise! It’s actually shorthand
for a different set of instructions.
▪ The processor can be made simpler.

• This command gets transformed
into a numerical representation.

• The processor then interprets the binary representation.
▪ That’s essentially all a computer does!
▪ CS 447 looks at this in much greater detail.

CS/COE 0449 – Spring 2019/2020
4

Compute t0+0
Put into “a0”

Assembly vs. Machine Language

• Machine language instructions are the patterns of bits that a
processor reads to know what to do

• Assembly language (or "asm") is a human-readable (mostly), textual
representation of machine language.

5

MIPS asm MIPS machine language

Is Assembly Useful?

• Short answer: YES

• Assembly is “fast”, so we should use it for everything!
--- NO!!! ---

• No type-checking, no control structures, very few abstractions.
--- Fairly impractical for large things ---

• Tied to a particular CPU.
▪ So, large programs have to be rewritten (usually) to work on new things.

• Yet: good for specialized stuff.
▪ Critical paths and “boot” code in Kernels / Operating Systems

▪ HPC (simulators, supercomputer stuff)

▪ Real-time programs (video games; tho increasingly less / abstracted away)

▪ And…

6

• Modifying programs after-the-fact. (Or reverse-engineering them)

• Legal “gray-area,” / “confusing-mess” but generally modification/reverse
engineering is allowed. Kinda? (Section 1201, US Code 17 § 108, etc)
▪ Removing copy protection in order to preserve/backup.

▪ Librarians and preservationists and “pirates” alike may all use/view/write assembly for this!

• I patched (the freely distributed) Lost Vikings so it would avoid copy protection and
use a different sound configuration (so I could run it in a browser emulator)

Practical Applications of Assembly: Modification

7

Don’t arrest me
plz

x86 (NASM / Intel Syntax, MS-DOS)

Practical Applications of Assembly: Debugging

• Programs written in C, etc are generally translated into assembly.
▪ And then into machine code.

• Or you can look at the machine code of programs and get an
assembly code listing.
▪ And step through the program one instruction at a time.

• When programs crash (sometimes programs you don’t have the
code for) you can look at the assembly code and assess.

• Programs exist to help you (gdb, IDA Pro, radare, etc)

• We will apply this knowledge (using gdb) in a future assignment!

8

Basics of x86 Assembly
x86 really puts the… you know what… in Assembly

CS/COE 0449 – Spring 2019/2020 9

Instruction Set Architecture (ISA)

• An ISA is the interface that a CPU presents to the programmer.
▪ When we say "architecture," this is what we mean.

• The ISA defines:
▪ What the CPU can do (add, subtract, call functions, etc.)

▪ What registers it has (we'll get to those)

▪ The machine language
• That is, the bit patterns used to encode instructions.

• The ISA does not define:
▪ How to design the hardware!

• …if there's any hardware at all (think of Java, etc: virtual/hypothetical ISAs)

10

Types of ISAs: RISC

• RISC: "Reduced Instruction Set Computer"

• ISA designed to make it easy to:
▪ build the CPU hardware

▪ make that hardware run fast

▪ write compilers that make machine code

• A small number of instructions.

• Instructions are very simple

• MIPS (and RISC-V) is very RISCy

11

Types of ISAs: CISC

• CISC: "Complex Instruction Set Computer"

• ISA designed for humans to write asm.
▪ From the days before compilers!

• Lots of instructions and ways to use them

• Complex (multi-step) instructions to shorten
and simplify programs.
▪ "search a string for a character"

▪ "copy memory blocks"

▪ "check the bounds of an array access“

• Without these, you’d just write your programs to use the
simpler instructions to build the complex behavior itself.

• x86 is very CISCy

12

Types of ISAs: Overview

• CISC: Complex Instruction Set Computer (does a whole lot)

• RISC: Reduced Instruction Set Computer (does enough)

• Both: Equivalent!! (RISC programs might be longer)

13

“Hackers” (1995) – Of course, they are talking about a Pentium x86 chip…
which thanks to its backwards compatibility, is CISC. Oh well!

Then again… x86 is so complex, modern designs translate the CISC instructions into RISC microcode on the fly… so it’s RISC?? It can get complicated.

x86

• Descended from 16-bit 8086 CPU from 1978.

• Extended to 32 bits, then 64.

• Each version can run most programs from the previous version.
▪ You can (mostly) run programs written in ‘78 on your brand new x86 CPU!

• This ISA is complex!
▪ 30 years of backwards-compatibility… yikes.

▪ We won’t exhaustively go over it.

▪ There are, however, many very common idioms
and instructions.
• We will focus on these.

• And we will focus on READING x86, not writing it.

14

x86 Registers (general)
• Like MIPS, there are a set of general-purpose registers.

▪ There are 16; 64-bits in size and hold integer values in binary form.

• Unlike MIPS, you can refer to parts of each register.
▪ Called partial registers.

CS/COE 0449 – Spring 2019/2020
1532-bit register names16-bit register names

Denoted
by %

Stack
Pointer

x86 Registers (specialized)

• There are also registers that you cannot directly interact with.

• Like MIPS, x86 has a program counter ()
▪ Also like MIPS, it cannot be read directly.

• There is also a status register, which has information about
the CPU state after an instruction is completed.
▪ Stuff like a carry flag (CF) that denotes if an addition has a final carry.

▪ Overflow detection (OF) denoting if an operation overflowed.

• And some extra registers for vector math, floating point math, and
for OS usage we won’t go over.

CS/COE 0449 – Spring 2019/2020
16

x86 Instruction Types

• In MIPS, you had R-type, I-type and J-type instructions.

• In x86 (CISC) you generally can have any instruction refer to data
anywhere it is:
▪ Registers, Immediates, Memory addresses, etc

▪ Cannot refer to memory twice! (not possible:)

CS/COE 0449 – Spring 2019/2020
17

x86-64 (gas / AT&T syntax) MIPS

Immediates (prefixed by $)

Memory load (within parens)

Memory store

Displacement (can be -4, etc)

Complex Addressing

• In MIPS, you would carefully craft the set of instructions necessary
to interface with an array. (RISC)

• In x86, you can do a lot with just a single instruction. (CISC)
▪ : Base + (Index Scalar) where Scalar must be 1, 2, 4 or 8

• The fields are all optional; i.e., does just Index Scalar

CS/COE 0449 – Spring 2019/2020
18

x86-64 (gas / AT&T syntax) MIPS

“Load Effective Address”

LEA simply computes address (no memory access)

Complex Addressing: CISC Strikes Again!!

• When we say you can do a lot with just a single instruction, we
mean it!
▪ : Base + (Index Scalar) where Scalar must be 1, 2, 4 or 8

▪ What does the following do?
•

CS/COE 0449 – Spring 2019/2020
19

x86-64 (gas / AT&T syntax)

“Load Effective Address” ???

LEA simply computes address… it’s just very specific math.

x86 Instruction Qualifiers

• In MIPS, you sometimes had instructions varying on bitsize.

• In x86 (CISC) you can operate on any part of a register.
▪ 64-bits, 32-bits, 16-bits… even 8-bit sections sometimes.

• The assembler can assume usually, but explicit names also work:

CS/COE 0449 – Spring 2019/2020
20

x86-64 (gas / AT&T syntax) MIPS64

Ugh. In x86 a “word” here is 16-bits

“long word” which is 32-bits. 

“quad word” which is 64-bits.

The assembler “figures it out”

Hello World! (x86 vs. MIPS)

CS/COE 0449 – Spring 2019/2020
21

x86-64 (gas / AT&T syntax) MIPS (MARS)

Doing some x86 maths

• x86 and MIPS have, essentially, the same mathematical instructions.

CS/COE 0449 – Spring 2019/2020
22

x86-64 (gas / AT&T syntax) MIPS

However, x86 lets you slice and dice
• Each math instruction in x86 has variants based on the bitsize.

▪ (64-bit), (32-bit), (16-bit), (8-bit) (rest of field zero extended!!)

CS/COE 0449 – Spring 2019/2020
23

x86-64 (gas / AT&T syntax) MIPS

8-bit register aliases are not commonly used

Logical shift (zero extends)

Arithmetic shift (sign extends)

Assembly Interlude
Here, we take a break, and look at some existing code.

CS/COE 0449 – Spring 2019/2020 24

Why write assembly? When you can write C

• You can take any of your C programs and emit the assembly.

• The compiler can do this for you:

• This will create a file called which looks… messy.
▪ It has a ton of messy specific stuff wedged in there.

▪ But you can generally pull apart some meaning from it.

CS/COE 0449 – Spring 2019/2020
25

Looking at C compilers…

• The messy output of the gcc compilation to assembly:

CS/COE 0449 – Spring 2019/2020
26

x86-64 (gas / AT&T syntax,) C

main hasn’t even shown up yet…

Disassembly – See how the sausage is made…

• So, that’s not very useful. And often we don’t have the code!
▪ How do we go backward?

• You can take any compiled program and emit the assembly.
▪ Many tools can help you do this (radare, objdump, gdb)

• Using a tool called objdump (only disassembles code section):

• This will create a file called .
▪ You can glance at it and notice that it does not have names.

▪ And labels are a bit, well, nonexistent.

CS/COE 0449 – Spring 2019/2020
27

And… here we are…

• An objdump disassembly is slightly lacking context.

CS/COE 0449 – Spring 2019/2020
28

x86-64 (gas / AT&T syntax,) C

Machine code (in bytes)

Instruction address

Looking deeper

• Now we are starting to read the code… It does what we tell it to do!

CS/COE 0449 – Spring 2019/2020
29

x86-64 (gas / AT&T syntax,)

Instructions have varying size

So, the next instruction address
is irregular. Compare with MIPS / RISC-V.

Allocates “ ” on stack (from top)
Move argument to

Compares to and sets

Jumps if is 0 (is positive)

Sets to

Resets caller activation frame
Returns (return value is in)

Preserves (caller activation frame)

Brought to you by the letters: C ABI

• The C Application Binary Interface (ABI) are assembly conventions
▪ Like MIPS, certain registers are typically used for returns values, args, etc

▪ It is not defined by the language, but rather the OS.
• Windows and Linux (UNIX/System V) have a different C ABI 

• In our x86-64 Linux C ABI, registers are used to pass arguments:
▪ , , , , , (First, second, etc) (Like MIPS –)

▪ Remaining arguments go on the stack.

▪ Callee must preserve , , , , , (Like MIPS –)

▪ Return value: (overflows into for 128-bits) (MIPS –)

▪ Lots of other small things not worth going over.

• For reference: https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf

CS/COE 0449 – Spring 2019/2020
30

https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf

