
Investigating

Spring 2019/2020

wilkie
(with content borrowed from Vinicius Petrucci

and Jarrett Billingsley)

CS/COE 0449
Introduction to

Systems Softwarethe Code

8

Going with the Flow
Tracing the footsteps

CS/COE 0449 – Spring 2019/2020 2

Bringing back our alphabet soup: The C ABI

• The C Application Binary Interface (ABI) are assembly conventions
▪ Like MIPS, certain registers are typically used for returns values, args, etc

▪ It is not defined by the language, but rather the OS.
• Windows and Linux (UNIX/System V) have a different C ABI

• In our x86-64 Linux C ABI, registers are used to pass arguments:
▪ , , , , , (First, second, etc) (Like MIPS –)

▪ Remaining arguments go on the stack.

▪ Callee must preserve , , , , , (Like MIPS –)

▪ Return value: (overflows into for 128-bits) (MIPS –)

▪ Lots of other small things not worth going over.

• For reference: https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf

CS/COE 0449 – Spring 2019/2020
3

https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf

Function, function… what’s your… function

• The activation frame contains temporary
data needed by the function.
▪ is the return value
▪ is the current stack address
▪ is the address of this frame

CS/COE 0449 – Spring 2019/2020
4

C x86-64 (gas / AT&T syntax,)

What goes here?

Oh, that’s your function

• First: it fills the activation frame
with initial variable values.
▪ It may not allocate them in

any strict order. Here, it
allocates x first and further away.

CS/COE 0449 – Spring 2019/2020
5

x86-64 (gas / AT&T syntax,)

–

–

Allocates “ ” on stack (from top)

Resets caller activation frame

Returns (return value is in)

Preserves (caller activation frame)

Allocates “ ” on stack (from top)
(it does not have to be in order)

These are actual sandwiches (no hot dogs or w/e)

CS/COE 0449 – Spring 2019/2020
6

• When identifying
functions, you are
looking for that
tell-tale sandwich
pattern.

• A is a good sign
of the beginning of a
function

• And the will
happen before the

at the end.

• Everything between is
the sweet, sweet jam
that makes it unique.

Who controls the controls the flow

• Control flow is a or followed by
▪ will set based on the difference (subtraction) between values

▪ will set based on bitwise AND of both values (faster, but less useful)

• group set (program counter) to an address based on
▪ Often it is much more useful to just interpret the (is)

CS/COE 0449 – Spring 2019/2020 7

C x86-64 (gas / AT&T syntax,)

Who controls the controls the flow

• has bits that are set based on the ALU (CPU math logic) result
– most significant bit of result

– set if overflow occurred

• Each jump looks at different patterns. (Look ‘em up!)
– Jumps when

CS/COE 0449 – Spring 2019/2020 8

C x86-64 (gas / AT&T syntax,)

Perform x - 0 (does nothing!)

Jump if the result (that is, x)
does not have a set sign bit.

(x is positive in that case)

Perform x - y

Jump if the result is 0 or
if result is negative after overflow
or positive and didn’t overflow.

(x is >= y in these cases)

– set if result is zero
– set if last bit operation has carry

– set if or

Works because of 2’s
complement math.

(thus, instead of its strict definition,
better to think about it abstractly)

cmp, simplifying… the confusion

• Just remember that the order of operands is not the… best order…
▪ It’s kinda swapped around in the AT&T syntax we have been looking at:

CS/COE 0449 – Spring 2019/2020
9

Jump if x > 0

Jump if x >= y

Jump if x < y

Jump if x != y

We negate the
condition

Because we are
deciding when to

skip the code!

test… adding some new confusion

• is somewhat stranger… and requires some more thought.
▪ performs an AND of the arguments and sets flags on result

• Thankfully, generally only commonly used in a couple of cases.
▪ Generally to test a value against “true” or “false”.

▪ Recall that and will look at the zero flag ()

▪ Keep in mind that jumps are built around (which performs:)…

CS/COE 0449 – Spring 2019/2020
10

Jump if x != 0
(?)

Jump if x == 0
(?)

We negate the
condition

Patterns
• Control flow is a / before a

CS/COE 0449 – Spring 2019/2020
11

C

x86-64 (gas / AT&T syntax,)

–

–

Altogether now… Working backward

CS/COE 0449 – Spring 2019/2020
12

Negate logic to form “if” logic

Negate logic to form “if” logic

Deduction, dear watson

CS/COE 0449 – Spring 2019/2020
13

No use of … likely no arguments

Two stack allocations … Two local variables.
(initialized to 5 and, likely, -2)

Looking at … This simply returns zero.

Conventional wisdom: counting arguments

CS/COE 0449 – Spring 2019/2020
14

Readies … second argument!

Readies … first argument!

Since they are … yep! Both 32-bit!

Still have to follow the to the assembly of the function.

Like a in MIPS. A function call.

Conventional wisdom: counting arguments

CS/COE 0449 – Spring 2019/2020
15

Copies … function argument!

Copies … second argument!

Since they are … They are both 32-bit!

is the return address…
means it is a 32-bit return

