
How Programs

Spring 2019/2020

wilkie
(with content borrowed from Vinicius Petrucci

and Jarrett Billingsley)

CS/COE 0449
Introduction to

Systems SoftwareAre Made

10

Linkers
Filling in the blanks.

CS/COE 0449 – Spring 2019/2020 2

Compilation: Simple Overview – Step 1

CS/COE 0449 – Spring 2019/2020
3

hello.c hello.o

• The compiler takes source code
(files) and translates them into
machine code.

• This file is called an “object file” and
is just potentially one part of your
overall project.

• The machine code is not quite an
executable.
▪ This object file is JUST representing

the code for that particular source file.

▪ You may require extra stuff provided
by the system elsewhere.

Compilation: Simple Overview – Step 2

CS/COE 0449 – Spring 2019/2020 4

hello.c hello.o

• You may have multiple files.

• They may reference each other.
▪ For instance, one file may contain

certain common functionality and then
this is invoked by your program
elsewhere.

• You break your project up into
pieces similarly to your Java
programs.

• The compiler treats them
independently.

util.c util.o

Compilation: Simple Overview – Step 3

CS/COE 0449 – Spring 2019/2020
5

hello.c hello.o

• Then, each piece is
merged together to
form the executable.

• This process is done by
a linker and is called
linking.

▪ The name refers to how
the references to
functions, etc, between
files are now filled in.

▪ Before this step… it is
unclear where functions
will end up in the final
executable.

util.c util.o stdio.o

hello

External Libraries

It's just a grinder.

• In summary:

6

hello.c

code goes in, sausage object
files come out

Some compilers output
assembly and rely on an

assembler to produce
machine code

These days, it's common
for the compiler itself to
produce machine code,

or some kind of
platform-independent

assembly code
(typically: a bytecode)

The executable is produced
by a linker, which merges

code together.

The need for the linker

• A compiler converts source code into machine code.

• A linker merges pieces of machine code into an executable.

• Why have a separate tool for creating executables?

▪ Mixing different languages together (C, C++, Python, Rust, Go…)
• Lot’s of complications we won’t get to here.

• Assembly is the glue… all high-level languages have to get there.

▪ Let’s us break large programs up into smaller pieces.
• And we only have to recompile files that changed! (Faster)

▪ Those small pieces can come from others. Code reuse!
• We can share executable code among many running programs. (Shared Libraries)

CS/COE 0449 – Spring 2019/2020
7

What is inside that box?

• To understand what linkers do, we
need to see what an executable is
made out of.
(Spoilers: it is not just code/data)

• A Linux executable is defined by the
Executable and Linkable Format
(ELF) standard.
▪ Used for files

▪ And executables

▪ And (shared objects; soon!)

CS/COE 0449 – Spring 2019/2020
8

What the ELF ??

• Contains all of the segments and data sections defining a program.

• The ELF executable has roughly the following structure:

CS/COE 0449 – Spring 2019/2020
9

Offset Name Description

Magic Number 4 bytes: A byte followed by “ ” in ASCII

Class 1 byte: if 32-bit, 0x2 if 64-bit

Data 1 byte: if little-endian, 0x2 if big-endian

Version 1 byte: for the current version.

ABI 1 byte: for System V (our C ABI)

Machine 2 bytes: is x86, is MIPS, is RISC-V, etc

What the ELF ??

• The remaining fields indicate where certain sections start.

• An ELF executable contains these sections:
▪ Segment Headers (where .text, .data, .bss, etc, exist in the executable)

• The initial data for each memory segment in the memory layout!

• We will look at these again when we look at loading.

▪ The Symbol Table
• All of the “names” that may be referenced by other code.

• Symbols can consist of:
▪ Functions

▪ Global variables

▪ Special sections (special compiler or OS areas)

• We will focus on function/variable symbols.

CS/COE 0449 – Spring 2019/2020
10

– Viewing the symbol table

• You can investigate the symbols that are part of any object file
using the command on Linux/UNIX.

CS/COE 0449 – Spring 2019/2020
11

C ()

This is a symbol. It has a location.

Here it is! At 0x27 (39) bytes.

; Controlling the symbols

• Remember the keyword?

• This forces any symbol to be local to the current file. That is, it can
not be referenced by an outside function.
▪ This is because the symbol will not be included in the symbol table!

▪ The linker will not be able to see it.

• This is useful for avoiding name collisions, when two functions have
the same name.
▪ This normally would make using multiple files and other people’s code

troublesome.

▪ Using helps because it will not pollute the symbol table.

CS/COE 0449 – Spring 2019/2020
12

Controlled the symbols

• You can investigate the impact of using by again using the
command on Linux/UNIX.

CS/COE 0449 – Spring 2019/2020
13

C ()

This symbol has a location… but it can
only be referenced in this file.

Our static function is now “LOCAL”

; when you used to be an intern

• The other side of the coin is the keyword.

• This tells the linker that it should expect the symbol to be found
elsewhere.

CS/COE 0449 – Spring 2019/2020
14

C () C ()

This symbol is… somewhere.

Here it is!!

Final thoughts of global variables

• You should always avoid global variables.

• However, if you are using them, make sure to liberally use
▪ This will stop the names of variables from polluting the symbol table.

▪ The use of is likely indicating a poor design.

• This is also true for functions, too.
▪ Generally declare them unless you need

them from within another file.

▪ Helps make it clear what functions are important
and which can be deleted or refactored.

▪ (Much like private functions in classes)

• Always initialize your global variables!
CS/COE 0449 – Spring 2019/2020

15

Seeing through the linker’s eyes

• Which symbols are part of each file?

• Which are local and which are global?

• Which symbols are satisfied by the other file?

CS/COE 0449 – Spring 2019/2020
16

C () C ()A local symbol.

Referenced here.

A global symbol.

Referenced here.

Linker doesn’t see these
temporary variables.

A global symbol.

The linker references
“main” when it compiles
the executable.

We need to tell the compiler
that we are linking to a symbol.

Summing it up: Playing mad-libs

• The compiler hands
off object files with
blanks where
referenced symbols
reside.

• The linker’s job is to
fill in those blanks
with the location of
the symbol in the
final executable.

CS/COE 0449 – Spring 2019/2020
17

fibonacci.c

main.c main.o

fibonacci

???

fibonacci.o

0x007c0e10

Static Libraries (files)

• If you want to share
your library with
others…

• Instead of creating an
executable, you can
package together all of
the files into a
single archive (file)

• You can use the
program on Linux for
this.

CS/COE 0449 – Spring 2019/2020
18

util.c

tree.c tree.o

my-lib.autil.o

Compilation: Simple Overview – Redux

CS/COE 0449 – Spring 2019/2020
19

hello.c hello.o

• We can use my-lib.a in
place of the object files
we need.

• The file is just a
container for a set of
object files. Essentially,
it is just a kind of zip
file of object files.

• These object files get
copied into our
executable… not very
efficient! Hmm!util.c util.o my-lib.a

hello

External Libraries

Loaders
You should always stretch before you run – OSes do this, too.

CS/COE 0449 – Spring 2019/2020 20

The Operating System

• How does your ELF
executable actually run?

• There needs to be some
system software to unpack
the executable into memory.

• That system software is a
loader and it is part of an
operating system.

CS/COE 0449 – Spring 2019/2020
21

Memory Segments – Deeper dive!

• The ELF executable defines several segments:
▪ – The code segment (machine code)

▪ – The data segment (program data)

▪ – The read-only data segment (constants)

▪ – Uninitialized data segment (“zero” data)

• The segment is a special segment for all
data that starts as or .
▪ (Its name is Block Started by Symbol which is a

historic nonsense name. Sigh!)

▪ It is often an optimization: the executable does not
need to store a whole bunch of zeros.

▪ Hmm… the operating system must then allocate a
bunch of zeros. Is that fast?? (We’ll get there)

CS/COE 0449 – Spring 2019/2020
22

heap

currently unused but
available memory

.text

.data

.bss

stack

Kernel Memory

Running a program

1. Take the ELF executable.
▪ This defines each segment and where in memory

it should go.

2. Place the segment into memory.

3. Place the segment into memory.

4. Write the number of zeroes specified to the
segment.

5. Allocate the stack and assign the stack
pointer ()

6. Jump to the entry point address (the
location of the symbol)

▪ will call main after initializing the C
runtime and the heap.

CS/COE 0449 – Spring 2019/2020
23

heap

currently unused but
available memory

.text

.data

.bss

stack

Kernel Memory

Our lie starts to unravel!
We have a kernel…

Some .bss BS I’ve dealt with…

• Forgetting to zero the .bss segment is… very interesting.
▪ If you write an OS, and forget this, then you get loops that don’t work write.

▪ Because now variables that were equal to are now random garbage.

CS/COE 0449 – Spring 2019/2020
24

C () This goes into the .bss because it is zero

This does not go into the .bss because it is not a symbol.

That’s it???

• Pretty much! However, let’s make it more flexible.

• Our linking so far is static linking where all of the code goes into
the executable. Duplicate code from static libraries is copied in.
▪ Not very space efficient. Duplicates code most programs are using! (libc)

▪ What if we “shared” the code external to the executable?

• For dynamic linking we will think about loading not just the
executable, but library code as well. A shared library.
▪ The OS loader must load the program into memory and also take on the

task of loading library code.

▪ It then must do the “mad-libs” replacing references in the program to point
to where in memory the library code was loaded. Tricky!

CS/COE 0449 – Spring 2019/2020
25

Dynamic Linking
Linking but… yanno… animated.

CS/COE 0449 – Spring 2019/2020 26

Code that can be loaded… anywhere?

• The main problem is this:
▪ Programs generally need to assume where in

memory they live.

• They refer to functions and data at
particular addresses.
▪ The linker decides where those are, but they are

then hard-coded in.

• We want to provide a single software
library to multiple executables…
▪ We can’t know ahead of time where that library

can go in memory since programs are different
sizes… they might need multiple libraries… etc.

CS/COE 0449 – Spring 2019/2020
27

.text

.data

.bss

stack

Kernel Memory

libz.so .text

libz.so .data

Where should this go??

Solution: relocatable code

• Let’s allow code to refer to functions and/or data that may move.

• Essentially, the operating system plays the mad-lib game.
▪ The ELF executable has a list of “relocatable entries”

▪ The OS goes through them and fills them in according to where the external
symbols are.

CS/COE 0449 – Spring 2019/2020
28

C ()

Linking to the libz.so dynamic library

We don’t know where this function ultimately is…

Solution: relocatable code

• Let’s allow code to refer to functions and/or data that may move.

• Essentially, the operating system plays the mad-lib game.
▪ The ELF executable has a list of “relocatable entries”

▪ The OS goes through them and fills them in according to where the external
symbols are.

CS/COE 0449 – Spring 2019/2020
29

C () x86-64 ()

Solution: relocatable code: Loading

• When the OS loads this executable… it will have a relocation entry
that tells it to overwrite at byte the relative address of
“compressBound”

• With this extra step, the OS loader is also providing dynamic linking.

CS/COE 0449 – Spring 2019/2020
30

C () x86-64 ()

0x114b + 0x5fe = 0x1749
(is relative to)

In modern times, this makes use of a jump table
called a Procedure Linkage Table (PLT).

Taking a PIC, eating some PIE – Avoiding relocations

• In order to allow code to be resident
anywhere in memory, the compiler
must emit machine code that always
uses relative addresses!

• This is called position independent
code (or PIC).

• When your entire executable is made
out of PIC, it is a position
independent executable (or PIE)

• will compile code this way when
you specify the flag.
▪ You generally need this when creating

dynamic libraries.
CS/COE 0449 – Spring 2019/2020

31

Who doesn’t like pie???

Running a program - Redux

1. Take the ELF executable.

2. Place and initially prepare the
segments into memory.

5. Allocate the stack and assign the stack pointer
()

6. Repeatably load each required shared library.

6a. Place .text and .data in memory

6b. Rewrite .text sections by looking at the

relocatable entries

6c. Repeat for each library.

7. Jump to the entry point address (the location of
the symbol)

▪ will call main after initializing the C
runtime and the heap.

CS/COE 0449 – Spring 2019/2020
32

heap

.text

.data

.bss

stack

Kernel Memory

libz.so .text

libz.so .data

Being lazy – Run-time loading

• Having the OS load every
library at the start can delay the
execution of a program.
▪ What if your program rarely uses

a library?

▪ What if you want to expand the
program while it is running?
• Plugins are a good example.

• We can make use of an OS
service to dynamically load
libraries.
▪ On Linux we have the

and system functions.

▪ Look at the documentation online
and refer to examples.

CS/COE 0449 – Spring 2019/2020
33

C ()

Function pointers are
very messy.

Prints to the screen’s “error” buffer.

Uses the lazy-loaded function.

Investigating dynamic libraries

• If you would like to see what dynamic libraries a program uses, you
can use or the command.
▪ Cannot see the / lazy loaded libraries.

•

•

CS/COE 0449 – Spring 2019/2020
34

Linking, loading; static and dynamic… Whew!

• Linking is when we merge multiple pieces of executable code into
one logical program.

• We link at various times:

▪ At compile-time: using our normal files and static libraries ()

▪ At load-time: our OS reads and loads the executable and loads dynamic
libraries () at the same time, rewriting relocatable sections.

▪ At run-time: our program uses system services () to load dynamic
libraries lazily.

CS/COE 0449 – Spring 2019/2020
35

