
How Programs

Spring 2019/2020

wilkie
(with content borrowed from Vinicius Petrucci

and Jarrett Billingsley)

CS/COE 0449
Introduction to

Systems SoftwareAre Managed

11

CS/COE 0449 – Spring 2019/2020

Where’s the Lie?
And other operating systems questions.

2

3

On the last episode…

CS/COE 0449 – Spring 2019/2020

• Programs are loaded into memory by the
operating system.

• They have to exist in memory before they can
be executed.

• Programs go through a lot of trouble to have
all their data/code in memory.

3

.text

.data

.bss

stack

Kernel Memory

libz.so .text

libz.so .data

4

The Lie

CS/COE 0449 – Spring 2019/2020

• Programs are told that they are
the only things running…

• The only things in memory…

• We know that this is not true!

• Operating Systems are big liars
crafting illusions.

5

The Truth

CS/COE 0449 – Spring 2019/2020

• In reality, many programs can be running at the same time.

• Each program, when running, is typically called a process.
▪ A multitasking OS is (a rather common) one that supports concurrent

processes.

• The OS must handle switching from one process to another.
▪ Which processes get to run?

▪ What if you have more processes than CPUs?

▪ When do you switch from one to another?

▪ What if one is more urgent??

6

My process is one of method…

CS/COE 0449 – Spring 2019/2020

• A process is an abstraction representing a single instance of a program.
▪ An executable represents the initial state of a program and thus the process.
▪ A program can be instantiated multiple times, if needed.
▪ Each one would be a separate process… of the same program.
▪ Note: A processor is the hardware unit that executes a process. (makes sense!!)

• The Operating System defines what a process and its abstraction is.
▪ There is an OS representation and metadata associated with a process.
▪ The OS maintains two key lies:

• The control flow (exclusive use of CPU): as defined by the code (this lecture)
• The memory layout (exclusive use of memory): defined by executable/code (next lecture)

• We are focusing on the control flow, here.
▪ How do we determine when a program runs? When does the lie… break down?

CS/COE 0449 – Spring 2019/2020

CPU Scheduling
Eeny Meeny Miney Moe

7

8

The Reality

CS/COE 0449 – Spring 2019/2020

• Let us say that we have a machine with four separate CPUs.
▪ You could run four processes concurrently (at the same time) relatively easily.

▪ What about the fifth?

CPU State:
Registers

,

.text

.data

.bss

stack

.text

.data

.bss

stack

.text

.data

.bss

stack

.text

.data

.bss

stack

9

Multiplexing the CPU

CS/COE 0449 – Spring 2019/2020

• Truth be told, we often have fewer resources than needed.
▪ Sharing a common resource is called multiplexing.

• Now, consider a machine with a single CPU.

• We often want to run something in the foreground.
▪ Word processor, web browser, minesweeper… whatever.

• We still want some things running the background…
▪ Music player, virus scanner, chat client.

• We need to switch from one process to another at
particular times.
▪ Yet… we have to keep the illusion that the program is

uninterrupted…

.text

.data

.bss

stack

CPU State:
Registers

,

CPU

Process

10

Naïve Campbell was great in The Craft (1996)

CS/COE 0449 – Spring 2019/2020

• One way is to run processes sequentially (the naïve solution)
▪ When one process ends… run the next.

▪ Yet that’s not very flexible. (Stop your music player to open a PDF)
• Humans are in the mix! We need computers to be useful to us.

Memory

CPU

.text

.data

.bss

stack

.text

.data

.bss

stack

.text

.data

.bss

stack

.text

.data

.bss

stack

11

The cruel passage of time

CS/COE 0449 – Spring 2019/2020

• To multiplex the CPU, we quickly switch from process to process.

• The OS retains/restores the state (context) of the process.
▪ The OS must store this as a form of process metadata in memory.

.text

.data

.bss

stack

CPU State A:
Registers

,

CPU State B:
Registers

,

CPU State C:
Registers

,

CPU State D:
Registers

,

Memory

CPU

.text

.data

.bss

stack

.text

.data

.bss

stack

.text

.data

.bss

stack

12

The Context Switch

CS/COE 0449 – Spring 2019/2020

• When an Operating System goes from
one process to another, it performs a
context switch.

• This swaps out the CPU state of one
process for the next one to run.

1. Store registers (including stack
pointer and program counter) to
memory.

2. Determine next process to run.

3. Load those registers from memory.
Switch memory space. (see next lecture:
virtual memory)

4. Jump to old program counter. Go!

.text

.data

.bss

stack

CPU State A:
Registers

,

CPU State B:
Registers

,

CPU

.text

.data

.bss

stack

Context Context

CPU State B:
Registers

,

13

A deeper dive

CS/COE 0449 – Spring 2019/2020

• When we pause a process… we store the state of registers (context)

x86-64 (gas / AT&T syntax) – Process A x86-64 (gas / AT&T syntax) – Process BContext (A)

CPU State

14

When is a good time to call you?

CS/COE 0449 – Spring 2019/2020

• When should a program pause and let another one go?

• When programs voluntarily pause, this is called cooperative
scheduling.
▪ They may give up control at convenient points such as system calls.

• We often do not expect this, so modern Operating Systems forcibly
pause programs from time to time. Called preemptive scheduling.
▪ Processes give up control when hardware interjects via an “interrupt”

▪ How does this work?

15

Round Robin Scheduling

CS/COE 0449 – Spring 2019/2020

• One method is to just cycle through each process each for equal time.
▪ This is an element of “fairness” … each gets equal stake.

.text

.data

.bss

stack

CPU State A:
Registers

,

CPU State B:
Registers

,

CPU State C:
Registers

,

CPU State D:
Registers

,

Memory

CPU

.text

.data

.bss

stack

.text

.data

.bss

stack

.text

.data

.bss

stack

50ms 50ms 50ms 50ms

16

Problems with “fairness”

CS/COE 0449 – Spring 2019/2020

• Let’s say I want to play Doom Eternal
▪ In round-robin, I give the video game 25% of my resources.

.text

.data

.bss

stack

CPU State A:
Registers

,

CPU State B:
Registers

,

CPU State C:
Registers

,

CPU State D:
Registers

,

This should get
more priority. CPU

.text

.data

.bss

stack

.text

.data

.bss

stack

.text

.data

.bss

stack

50ms 50ms 50ms 50ms

17

I have priorities!

CS/COE 0449 – Spring 2019/2020

• Round-Robin schedulers are fair; then we tweak to meet expectations.
▪ How might we add a sense of “priority” to the scheduler?

• Let’s look at a visualization of how processes are currently scheduled
with a round-robin scheme: (Doom gets only 25% of resources!) 

A

C

B

50ms 50ms 50ms 50ms 50ms

A

B

50ms

50ms / 200ms = 25%

18

I have priorities!

CS/COE 0449 – Spring 2019/2020

• Round-Robin schedulers are fair; then we tweak to meet expectations.
▪ How might we add a sense of “priority” to the scheduler?

• We could give some tasks a longer quantum.
▪ A quantum is the amount of time a task is guaranteed to run.

A

C

B

100ms 50ms 50ms 50ms 100ms

100ms / 250ms = 40%

19

I have priorities!

CS/COE 0449 – Spring 2019/2020

• Round-Robin schedulers are fair; then we tweak to meet expectations.
▪ How might we add a sense of “priority” to the scheduler?

• We could increase the chance a specific task is scheduled.
▪ Round-robin + priority: two queues, switch back and forth and round-robin

within them.

A

C

B

50ms 50ms 50ms 50ms 50ms 50ms

100ms / 200ms = 50%

20

I have priorities!

CS/COE 0449 – Spring 2019/2020

• Round-Robin schedulers are fair; then we tweak to meet expectations.
▪ How might we add a sense of “priority” to the scheduler?

• We can then always do some sort of combination.
▪ Hybrid approaches do seem very alluring. Hmm. The power of trade-offs.

A

B

100ms 50ms 100ms

200ms / 300ms = 67%

50ms

21

Ideal circumstances: Human perception

CS/COE 0449 – Spring 2019/2020

• The reality: (very quickly switching)

A

B

100ms 50ms 100ms 50ms

• The illusion: (an ideal: perceived concurrency… no delay noticed)

A

B

100ms 50ms 100ms 50ms

22

There is no optimal.

CS/COE 0449 – Spring 2019/2020

• Like many of the topics in this course, there is no possible “best”.
▪ That is, there is no way to perfectly schedule general processes.

• Consider: It would be very lovely to schedule a process that handles
some user input, like a button press or a network request.
▪ Perfect situation: the OS schedules the task that handles the button

immediately before the button is pressed. What luck!

• However: You do not know when that button will be pressed.
▪ Maybe it is a sensor, like for detecting a fire!

• FIRE SEEMS IMPORTANT!! … and yet.

• Moral of the story: humans being users make things very hard.

23

Again, it is not magic.

CS/COE 0449 – Spring 2019/2020

• But… wait… how does hardware stop a program?
▪ For instance, when the quantum is up, how does the OS get control and

perform the context switch?

• Ah, the hardware has support for “being rude” which is called an
interrupt.
▪ A programmable mechanism for asynchronously calling a function when a

particular type of error or signal is noticed.

• Let’s take a look.

CS/COE 0449 – Spring 2019/2020

Interrupts
It’s rude… but necessary.

24

25

How rude

• An interrupt is an exceptional state that diverts execution from its
normal flow.
▪ When issued by hardware, sometimes referred to as a hardware exception

• For instance, a hardware timer or external event caused by a sensor.

▪ When caused by a user process, sometimes referred to as a software trap
• Divide-by-zero error, some floating-point exceptions, system calls.

• We have seen these before!
▪ System calls are a type of interrupt (software trap).

▪ This is an intentional interrupt caused by a specific program instruction.
• The program is “interrupted” while the OS performs a task.

• We have also encountered them in our failures.
▪ Segmentation / Protection / Page Faults are also interrupts. (trap? exception?)

▪ These are (usually) unintentional interrupts caused by a generic instruction.

26

Here are some typical UNIX/Linux system calls:

CS/COE 0449 – Spring 2019/2020

Number Name Description

read Reads bytes from an open file.

write Writes bytes to an open file.

open Opens a file and returns the file handle.

close Closes an open file.

stat Returns metadata about a file.

fork Spawns a copy of the current process.

execve Loads and then executes a program.

27

System calls

CS/COE 0449 – Spring 2019/2020

• System calls: predictable, intentional interrupts at specific instructions.
▪ Interrupts occurring at specific instructions are synchronous interrupts.

• In x86-64, the program pauses at a instruction, then resumes
at the following instruction when the OS finishes the task
▪ (… and the OS calls the instruction)

• Let’s take a deeper look.

28

Hello, Hello World

CS/COE 0449 – Spring 2019/2020

x86-64 (gas / AT&T syntax) - Application x86-64 (gas / AT&T syntax) - Kernel (main OS program)

A jump to the kernel

Pre-registered to be called on syscall

Saves CPU state

Performs action

Restores state

Returns to process

29

Tick tock tick tock merrily sings the clock

CS/COE 0449 – Spring 2019/2020

• A hardware timer can preempt (forcibly pause) a program at any time.
▪ Interrupts that occur at any instruction are asynchronous interrupts.

• In a preemptive operating system, a hardware timer is used to give a
maximum bound to how long a process runs.
▪ Your operating system programs the timer such that it sends a signal at a

regular interval.

▪ Your operating system has a function that is called when such a signal is read.

▪ That function will respond by invoking the scheduler and pausing the current
task and resuming or starting another.

• Let’s look at the basic procedure an OS uses to program an interrupt.

30

Programming interruption

CS/COE 0449 – Spring 2019/2020

• On most hardware, there is a programmable table somewhere in
memory that, when written to, defines where code exist to handle
each interrupt.

• Every possible interrupt is given a number. Segmentation faults might
be interrupt 10. Timers might be interrupt 0. Et cetera.

• When an interrupt occurs, based on its interrupt number, the
corresponding entry in a lookup table called an interrupt vector table
or an interrupt descriptor table would be used to determine where in
the kernel to jump.

31

The Interrupt Table

CS/COE 0449 – Spring 2019/2020

• The interrupt table is a simple table.

• Fun Fact: It is often located at
address 0x0 in memory!
▪ So, operating system kernels can’t

exactly always treat zero as an invalid
address…

• When a process triggers a listed
interrupt or external hardware sends
a signal to the interrupt controller…
▪ the CPU jumps to the given address.

Value Description

Divide by zero

Overflow

Double Fault

General Protection Fault

Page Fault

Stack Fault

Alignment Error

. . .

Timer Signal

Network Device Signal

Audio Device Signal

32

Ah! There art thee ol’ interrupt!

CS/COE 0449 – Spring 2019/2020

• Let’s take a look at interrupt handling…

x86-64 (gas / AT&T syntax) – Process A x86-64 (gas / AT&T syntax) – KernelContext (A)

CPU State

• An interrupt is the likely
cause of our prior
interruption.

• The interrupt handler is the
code that handles context
switching and scheduling

x86-64 (gas / AT&T syntax) – Process B

33

Overview

CS/COE 0449 – Spring 2019/2020

• Interrupts can be categorized in several ways:
▪ They can occur outside of our program: hardware exceptions

▪ They can occur on an instruction in our program: software trap

▪ They can occur at any time: asynchronous interrupts

▪ They can occur at specific times: synchronous interrupts

• Interrupts are what allow operating systems to function!
▪ When you press a key on your keyboard.

▪ When you receive a packet on the network.

▪ When your sound card wants the next second of audio.

▪ When you divide by zero…
• To then mercilessly murder your process.

