
How Programs

Spring 2019/2020

wilkie

CS/COE 0449
Introduction to

Systems SoftwareReproduce

12

CS/COE 0449 – Spring 2019/2020

Creating Processes
Forks: what you stick in things that are done… and sometimes a system call.

2

3

This is a story about a system call…

CS/COE 0449 – Spring 2019/2020

• We are focusing several system calls starting with

• This system call copies the current process.
▪ This creates a “child” process that is a duplicate of the

memory and state of its parent.

• This can be a convenient way to gain concurrency.
▪ Copy the process and run each copy …

▪ … those copies now run at the same time.
• This is the origin of the term “fork” … a logical split in a

program where there are now multiple paths.

▪ We will see this idea in action soon.

4

Here’s Dolly

CS/COE 0449 – Spring 2019/2020

• The system call in action:
▪ Copies the memory layout.

▪ Copies the process state. (but gives it a unique ID)

CPU State A:
Registers

,

.text

.data

.bss

stack

CPU State A:
Registers

,

.text

.data

.bss

stack

CPU State B:
Registers

,

.text

.data

.bss

stack

PID: 4356 PID: 6567

Parent Child

A B

5

Here’s Dolly’s ID tag

CS/COE 0449 – Spring 2019/2020

• The system call in action:
▪ Updates the child’s CPU state so that it returns . (An invalid)

▪ Updates parent’s CPU state to return the child’s process ID. ()

CPU State A:
Registers

.text

.data

.bss

stack

CPU State B:
Registers

.text

.data

.bss

stack

PID: 4356 PID: 6567

Parent Child

Ensures each
process can detect

which it is

A B

6

A small fork example… a… salad fork? example??

CS/COE 0449 – Spring 2019/2020

• There is only one process when
is called.

• However, when is called, the
system call returns “twice”
▪ Once in the parent process

▪ Once in the child process

• This starts two concurrent executions
within the same program.
▪ Via two processes.

• What does this print out?

C

The x is copied,
so it has different
values in child
and parent.

7

Children first… OR NOT

CS/COE 0449 – Spring 2019/2020

• If the child process goes first…
▪ Then it will print the child text.

• Then the scheduler schedules the
parent process once more.
▪ Then it will print the parent text.

• However, that’s not the only possible
pattern.

• If the parent process goes first...
▪ Then it prints the parent text …

▪ … followed by the child.

C

Child Parent

8

Two roads diverged in a yellow wood, AND I TOOK BOTH (NOT SORRY)

CS/COE 0449 – Spring 2019/2020

C • If I were to extend the code to make
it loop infinitely...
▪ The parent and child will constantly race

to print out their respective text.

9

The good, the bad, and the unpredictable

CS/COE 0449 – Spring 2019/2020

• Adding concurrency to your program makes things… weird.
▪ You cannot rely on the order processes will be scheduled.

▪ Your operations will be asynchronous (not synchronized; no known order)

• If you need to synchronize processes, you can do so with .

• yields the process and returns only when a child process ends.
▪ It returns when any child process exits.

▪ Its return value is the pid of the child process that exited.

▪ You can also use to specify a specific child process by its pid.

10

Waiting is such sweet sorrow… wait that’s not right

CS/COE 0449 – Spring 2019/2020

• By using the parent process only
continues when the child process ends.

• Therefore, the output order is now
known.
▪ If the parent goes first…

▪ It gets stuck at the call.

▪ Then the child goes until it hits

▪ ends the process.

▪ And then the parent continues.

• Nice and well-known behavior!

Always:

Child Parent

11

Notes on

CS/COE 0449 – Spring 2019/2020

• The system call ends the current process.
▪ The given argument is the process return code also known as an exit code.

▪ Normally your program yields an exit code at the end of

▪ Exit ends your program exactly at the point of the call.

▪ Therefore, it has its own means of giving the exit code.

• However, we can have processes that are no
longer running…
▪ Yet, not deallocated either.

▪ The are not living…

▪ And not dead!!

12

Zombies

CS/COE 0449 – Spring 2019/2020

• A terminated process still takes up space
▪ All that process metadata sticks around

▪ Until the parent tells the system it doesn’t need it

• As long as the parent stays alive…
▪ The corpse of the child process sticks around, too.

• These are called zombie processes.
▪ They are processes that still exist and have an ID

yet do not run and are no longer scheduled.

Dancing Zombie from Plants vs. Zombies
Copyright PopCap Games, a subsidiary of EA Games

13

The night of the living dead

CS/COE 0449 – Spring 2019/2020

C • If I added an infinite loop to the
parent…
▪ When the child ends…

▪ And I list the active processes using the
command.

▪ I see a “defunct” child process. A ZOMBIE!

14

Just the normal kind of dead.

CS/COE 0449 – Spring 2019/2020

C • However, if I added an infinite loop to
the child…
▪ When the parent ends… the program

ends as well!

▪ And I list the active processes using the
command. I see only the child process

No zombies here!

Just orphans…

15

How to run a different program?

CS/COE 0449 – Spring 2019/2020

• When you a process, you are making an exact copy of that
process.

• However, maybe you want to create a process to run a different
program altogether?
▪ This is very useful… instead of using a software library

▪ You could just run the existing program.

• For this purpose, the family of system calls is used.
▪ There are several different variations of exec calls…

16

Invoking the OS loader…

CS/COE 0449 – Spring 2019/2020

C • Using the system call.
▪ The call takes the path to an executable

▪ And an array of strings for the arguments.
• Sentinel: must end in a

▪ The first argument to a C program is
always its own path!

We ran “ ”

Add then continued
our own process.

17

Here’s Dolly’s brother Bobby. Bobby is a goat somehow. Don’t ask.

CS/COE 0449 – Spring 2019/2020

• The system call in action:
▪ Copies the memory layout. Copies the process state. (but gives it a unique ID)

• The system call in action:
▪ It’s a goat now.

CPU State A:
Registers

,

.text

.data

.bss

stack

CPU State A:
Registers

,

.text

.data

.bss

stack

CPU State B:
Registers

,

.text

.data

.bss

stack

PID: 4356 PID: 6567

Parent Child

A B
CPU State B:

Registers
,

new .text

new .data

new .bss

new stack

18

Different forms of

CS/COE 0449 – Spring 2019/2020

• You can look up the many different styles of exec
▪ Each one has a different way of calling it.

• called with an array of strings terminated with a

• same, but can use specific environment variables

• searches the system paths for the executable

• combination of and

• There are also functions that use function arguments instead
of an array of strings.
▪

19

The common ancestor… and the orphan.

CS/COE 0449 – Spring 2019/2020

• UNIX/Linux has an interesting design: every application is a child process.
▪ The root is the task.

▪ Your shell spawns child
processes when you ask
to run a command.

▪ It uses / !

Bash
(shell)

init

httpd
(daemon) GUI

./app

child

• When your own application
spawns a process, the same thing
happens.
▪ You use

▪ If your app exits before the child…

▪ The child is an orphan process.
How to interact with this process??

(signals…)

Orphans get adopted by
the root process.

20

An extreme attitude

CS/COE 0449 – Spring 2019/2020

• How do we interact with orphaned processes?

• How do we synchronize at a finer granularity?
▪ Using is rather inflexible.
▪ It can only detect that a child process ends using or via main

• What if you want to synchronize smaller events…
▪ The child process does something... The parent responds…
▪ But, keep the child process running longer.

• For this, we will need the parent and child to be able to communicate
with one another.

CS/COE 0449 – Spring 2019/2020

Inter-Process
Communication

IPC … not to be confused with ICP

21

22

What that last slide said…

CS/COE 0449 – Spring 2019/2020

• Passing data or messages from one process to another is called
inter-process communication.

• This is a broad OS topic as there are many ways to do this.
▪ Shared memory (we will talk about this a bit later)

▪ Message passing (we will talk about this NOW)
• Simple messages (signals, this lecture)

• More complex (pipes, semaphores, etc, soon)

• Most complex (network sockets, we will look at this later)

• Message passing is a fancy way of saying are using an API to send a
small message to another process.
▪ And also some means of listening for messages.

23

All aboard the train metaphor

CS/COE 0449 – Spring 2019/2020

• In UNIX/Linux, tiny messages sent between processes are called
signals.

• They are typically used to send messages about events from the
system. Here are a few:

Number Name Description Default Behavior

Interruption – Somebody pressed CTRL+C Terminate

Kill – Somebody wants us gone… Terminate

Memory Violation – Oops! Seg-fault Terminate

Child exited – Child process ended Ignore

A signal that you can use for any purpose Ignore

24

Talking to orphans

CS/COE 0449 – Spring 2019/2020

C • Recall the infinite looping child.

• Orphans run in the background.

• However, we can send a
message () to the process by its id.

The parent ended.

But not the child.

We can send a message
using the application..

And the child is gone!

25

Receiving Signals

CS/COE 0449 – Spring 2019/2020

• The standard function will
set up your application to listen for a
particular signal.

• This example hooks the empty
function sigint_handler to override
the default behavior of the SIGINT
signal.

• If you recall, that happens on a
CTRL+C… which now does not
terminate the foreground process!
▪ Needs to be killed using now.

C

26

Waiting for a signal…

CS/COE 0449 – Spring 2019/2020

• Proper use of signals and waiting on
the values of variables to change can
create synchronization.

2. Which causes
the child to wait…

1. is initially

Both processes set
to 0 on .

3. Until the parent process signals it,
after it prints its message.

4. Afterward, the
parent process waits

5. Until child signals it back
after printing its own message.

6. Repeat… for both

27

Let’s look at that again. (animated)

CS/COE 0449 – Spring 2019/2020

Child Parent

1. Child waits

2. Parent prints
1. Sets its own wait variable

2. Sends signal to child

3. Waits

3. Child prints
1. Sets its wait variable

2. Sends signal to parent

3. Waits

4. Parent prints
1. Sets its own wait variable

2. Sends signal to child

3. Waits

5. Repeat…

0 0

28

If you are in a hurry... (animated)

CS/COE 0449 – Spring 2019/2020

Child Parent

1. Child waits

2. Parent prints
1. Sets its own wait variable

2. Sends signal to child

3. Waits

3. Child prints
1. Sends signal to parent

2. Sets its wait variable

3. Waits

4. Parent prints
1. Sets its own wait variable

2. Sends signal to child

3. Waits

5. OH NO!!!

0 0

Let’s Mess Things Up!!

29

The race is on!

CS/COE 0449 – Spring 2019/2020

• When you have concurrent tasks, they may compete.

• A bug in a concurrent program where the logic breaks if one process
out-paces another is called a race condition.
▪ That is, if the correctness requires a strict order, but that order is not

guaranteed.

• When you add synchronization you need to be careful that you ensure
that each synchronized section (called a critical section) is logically
sound.

We know we won’t be interrupted
between the while loop and the signal.

(This is our critical section)

30

Summary

CS/COE 0449 – Spring 2019/2020

• Today we learned the birds and bees of programs.
▪ They start as processes (technically children of a shell or some root process)

▪ They can spawn child processes using

▪ They can load executables over top of them using system calls

▪ And if one process ends before the other, we either get zombies or orphans.

• We also learned about inter-process communication in the form of
signals.
▪ These are tiny messages sent using the function; received via .

▪ We can use them to synchronize events between processes.

▪ However, if we aren’t careful, we may introduce a bug called a race condition.

▪ This is when the program requires a logical order it cannot guarantee.

