How PROGRAMS CS/COE 0449
Introduction to
REPRODUCE

Systems Software

wilkie

T

CREATING PROCESSES

Forks: what you stick in things that are done... and sometimes a system call.

B

This is a story about a system call...

* We are focusing several system calls starting with fo

* This system call copies the current process.

= This creates a “child” process that is a duplicate of the
memory and state of its parent.

* This can be a convenient way to gain concurrency.
= Copy the process and run each copy ...

= ... those copies now run at the same time.

 This is the origin of the term “fork” ... a logical split in a
program where there are now multiple paths.

= We will see this idea in action soon.

Here’s Dolly

* The fork() system call in action:
= Copies the memory layout.
= Copies the process state. (but gives it a unique ID)

Parent Child
stack stack
. .
& £ T bss 7 &€
text fork() text '
--------- >
CPU State A: CPU State B:
Registers Registers
%FLAGS, %RIP %FLAGS, %RIP

| PID:4356 | | PID:6567 |

Here's Dolly’s ID tag

* The fork() system call in action:
= Updates the child’s CPU state so that it returns o. (An invalid pid)
= Updates parent’s CPU state to return the child’s process ID. (pid)

Parent Child
stack | stack
.bss .bss
text fork() text
--------- >
CPU State A: CPU State B:
Registers Registers
%RAX = 6567 %RAX = 0

Y Ensureseach

| PID: 4356 | process can detect | PID: 6567 |
which itis

A small fork example... a... salad fork? example??

C * There is only one process when

#include <stdio.h> // printf Spawn() is called.
#include <unistd.h> // pid_t

void spawn(void) {

int x = 0; However, when fork() is called, the
P;dzt_zid =®§°Ek<>; system call returns “twice”
1 pid == .
v = Once in the parent process
printf(”child! %d\n”, x); TheXis copied, - . .
) % 5o it has different Once in the child process
else { values in child
++; ‘ . . .
S ntf(marent! ad\nt. <y 2nd parent - This starts two concurrent executions
} } within the same program.

> . /fork-example = Via two processes.
int main(void) {
spawn();

return @; child! -1 * What does this print out?

parent! 1

3

Children first... OR NOT

C * |f the child process goes first...
#include <stdio.h> // printf = Then it will print the child text.
#include <unistd.h> // pid_t
Child Parent
void spawn(void) { * Then the scheduler schedules the
¥, pid_t pid = fork();

if (pid == 0) { parent process once more.

} printf("childiin®); = Then it will print the parent text.

else {

printf(”“parent!\n");

) * However, that’s not the only possible
} > ./fork-example pattern.
child!
int main(void) {
spawn() ; parent!]
return @; > /fork-example » If the parent process goes first...
} varent! = Then it prints the parent text ...

child! = ... followed by the child.

Two roads diverged in a yellow wood, AND | TOOK BOTH (NOT SORRY)

C |If | were to extend the code to make
#include <stdio.h> // printf It Ioop Inflnltely"'

#include <unistd.h> // pid_t = The parent and child will constantly race
to print out their respective text.

void spawn(void) {
pid_t pid = fork();

while (1) { > ./fork-example
if (pid == @) { parent!
printf("child!\n"); child!
ilse (parent!
printf(”parent!\n"); parent!
) } child!
} parent!
. . . parent!
lnzp2;;2§j01d) { parent!
return 0; child!

b child!

The good, the bad, and the unpredictable

» Adding concurrencyto your program makes things... weird.
= You cannot rely on the order processes will be scheduled.
= Your operations will be asynchronous (not synchronized; no known order)

* |f you need to synchronize processes, you can do so with wait().

* wait() vyields the process and returns only when a child process ends.
= |t returns when any child process exits.
= |ts return value is the pid of the child process that exited.
= You can also use waitpid(pid_t) to specify a specific child process by its pid.

Waiting is such sweet sorrow... wait that’s not right

#include <stdio.h> // printf
#include <unistd.h> // pid_t
#include <stdlib.h> // exit
#include <sys/wait.h> // wait

Child Parent

void spawn(void) {
P, pid_t pid = fork();
if (pid == 0) {

printf("child!\n");
. »
exit(4 9@4
3} 84

else {
pid_t exited_pid = 0;
while (exited_pid != pid)
exited_pid = wait(NULL);
printf("parent!\n"); Always:

b
} > ./fork-example
int main(void) { child!

spawn();

return 0; parent!

}

* By using wait() the parent process only
continues when the child process ends.

* Therefore, the output order is now
known.
= |f the parent goes first...
= |t gets stuck at the wait() call.
= Then the child goes until it hits exit()
= exit() ends the process.
= And then the parent continues.

* Nice and well-known behavior!

Notes on exit()

* The exit(int) system call ends the current process.
= The given argument is the process return code also known as an exit code.
= Normally your program yields an exit code at the end of main()
= Exit ends your program exactly at the point of the call.
= Therefore, it has its own means of giving the exit code.

 However, we can have processes that are no
longer running...
= Yet, not deallocated either.

= The are not living...
= And not dead!!

* A terminated process still takes up space
= All that process metadata sticks around
= Until the parent tells the system it doesn’t need it

* As long as the parent stays alive...
= The corpse of the child process sticks around, too.

* These are called zombie processes.

= They are processes that still exist and have an ID
yet do not run and are no longer scheduled.

Dancing Zombie from Plants vs. Zombies
Copyright PopCap Games, a subsidiary of EA Games

The night of the living dead

C * If | added an infinite loop to the
#include <stdio.h> // printf parent'" .
#include <unistd.h> // pid_t = When the child ends...
, ‘ = And | list the active processes using the ps
void spawn(void) {
. N . command.
pid_t pid = fork();

if (pid == 0) {

= | see a “defunct” child process. A ZOMBIE!
printf(”"child!\n");

glse c > ./fork-example
printf("parent!\n"); parent!
while(1) {3} // Infinite Loop! child!
}
}
> ps
int main(void) { PID TTY TIME CMD
spawn();
return ; 6569 pts/9 00:00:12 fork_example

}

5435 pts/9 00:00:00 fork_example <defunct>

Just the normal kind of dead.

C

#include <stdio.h> // printf
#include <unistd.h> // pid_t

void spawn(void) {
pid_t pid = fork();
if (pid == 0) {
printf("child!\n");
while(1) {3} // Infinite Loop!
}
else {
printf("parent!\n");
}
}

int main(void) {
spawn() ;
return 0;

}

 However, if | added an infinite loop to
the child...

= When the parent ends... the program
ends as well!

= And | list the active processes using the
ps command. | see only the child process

> ./fork-example
child!

parent!

> ps
PID TTY TIME CMD
5435 pts/9 00:00:00 fork_example

No zombies here!

Just orphans...

How to run a different program?

* When you fork() a process, you are making an exact copy of that
process.

 However, maybe you want to create a process to run a different
program altogether?
= This is very useful... instead of using a software library
= You could just run the existing program.

 For this purpose, the execx() family of system calls is used.
= There are several different variations of exec calls...

Invoking the OS loader...

C

#include <unistd.h> // for pid_t
#include <sys/wait.h> // for wait
#include <stdio.h> // for printf

void main(void) {
pid_t pid = fork();
char* argv[] = {"/usr/bin/1s", "-a", NULL}Y;
if (pid == @) { // Child
printf("Child is calling exec!\n");
execv("/usr/bin/ls", argv);

}
else {
printf("Parent is waiting...\n");
wait(NULL); N
printf("Done!\n"); We ran “ls -3”
} P
} Add then continued

our own process.

* Using the execv() system call.
= The call takes the path to an executable
= And an array of strings for the arguments.
* Sentinel: must end in a NULL

= The first argument to a C program is
always its own path!

> ./fork-exec-example
Parent is waiting!
Child is calling exec!

fork-exec-example.c

fork-exec-example

Done!

Here's Dolly’s brother Bobby. Bobby is a goat somehow. Don’t ask.

* The fork() system call in action:
= Copies the memory layout. Copies the process state. (but gives it a unique ID)

* The execv() system call in action:
= |t's a goat now.

Parent Child
stack | | new stack |
.bss new .bss
text fork() new .text
--------- >
CPU State A: CPU State B:
Registers Registers
%FLAGS, %RIP %FLAGS, %RIP

| PID:4356 | | PID:6567 |

Different forms of exec

* You can look up the many different styles of exec
= Each one has a different way of calling it.

* execv called with an array of strings terminated with a NULL
 execve same, but can use specific environment variables

* execvp searches the system paths for the executable

* execvpe combination of execve and execvp

* There are also execl* functions that use function arguments instead
of an array of strings.
= execlp(”ls”, "1s", "-a", NULL);

The common ancestor... and the orphan.

« UNIX/Linux has an interesting design: every application is a child process.
= Theroot is the init task.

= Your shell spawns child
processes when you ask
to run a command.

= [t uses fork() / exec()!

httpd
(daemon)

Orphans get adopted by -
the root process.

* When your own application
spawns a process, the same thing
happens.

= You use fork()
How to interact with this process?? =»> = |f your app exits before the child...
(signals...) = The child is an orphan process.

An extreme attitude

 How do we interact with orphaned processes?

 How do we synchronize at a finer granularity?
= Using wait() is rather inflexible.
= |t can only detect that a child process ends using exit() or via main

 What if you want to synchronize smaller events...
= The child process does something... The parent responds...
= But, keep the child process running longer.

 For this, we will need the parent and child to be able to communicate
with one another.

T

INTER-PROCESS
COMMUNICATION

|PC ... not to be confused with ICP

B

What that last slide said...

« Passing data or messages from one process to another is called
inter-process communication.

* This is a broad OS topic as there are many ways to do this.
= Shared memory (we will talk about this a bit later)
= Message passing (we will talk about this NOW)

« Simple messages (signals, this lecture)
« More complex (pipes, semaphores, etc, soon)
« Most complex (network sockets, we will look at this later)

* Message passing is a fancy way of saying are using an APl to send a
small message to another process.

= And also some means of listening for messages.

All aboard the train metaphor

 In UNIX/Linux, tiny messages sent between processes are called
signals.

* They are typically used to send messages about events from the
system. Here are a few:

Mo tome_Descriton L et et

SIGINT Interruption - Somebody pressed CTRL+C Terminate
9 SIGKILL Kill - Somebody wants us gone... ® Terminate
11 SIGSEGY Memory Violation - Oops! Seg-fault Terminate
17 SIGCHLD Child exited - Child process ended Ignore

10 SIGUSR1T A signal that you can use for any purpose Ignore

Talking to orphans

C Recall the infinite looping child.
#include <stdio.h> // printf * Orphans run in the background.
#include <unistd.h> // pid_t
« However, we can send a SIGKILL
void spawn(void) { H H
RPN message (9) to the process by its id.
if (pid == 0) {
printf(’child!\n"); > ./fork-example
while(1) {3} // Infinite Loop! child!
} parent!
else {
printf("parent!\n"); > ps
3 The parent ended. PID TTY TIME CMD
¥ 5435 pts/9 ©00:00:00 fork_example
int main(void) { But not the child. > kill -9 5435
spawn(); We can send a SIGKILL message > PS
) return o; using the kill application.. PID TTY TIME CMD
>

And the child is gone!

Receiving Signals

C

#include <stdio.h> // for printf
#include <unistd.h> // for pid_t
#include <signal.h> // for signal

* The signal() standard function will
set up your application to listen for a
particular signal.

void sigint_handler(int signum) { * This example hooks the empty
} function sigint_handler to override
the default behavior of the SIGINT
int main(void) { Signal.
signal (SIGINT, sigint_handler);
while(1) {3}
return ©; * If you recall, that happens on a
} CTRL+C... which now does not

terminate the foreground process!
= Needs to be killed using SIGKILL now.

Waiting for a signal...

#include <stdio.h> // for printf

#include <unistd.h> // for pid.t * Proper use of signals and waiting on
include <signal.h> // for signal .
cotie it soods_count = o1 the values of variables to change can
static int wait_counter = o; create synchronization.
void signal_handler(int signum) {

wait_counter = 0;
) ® Both processes set)

} > ./signal-sync-example

void main(voidy # wait_counter toOon SIGUSRIT. Produced datal

signal (SIGUSR1, signal_handler); |
0id t pid = Fork(): ' o Consumed data!
1. wait_counter isinitially 1

wait_counter = 1; Produced data!

while(goods_count < 5) { o
if (pid == @) { // Child: Consumes data 2' WhICh causes Consumed data!

while(wait_counter == 1) {} <= the child to wait...
printf(”"Consumed data!\n\n");

. ~ Produced data!
wait_counter = 1;

kill(getppid(), SIGUSRT); <o 5. Until child signals it back Consumed data!
} after printing its own message.
else { // Parent: Produces data |
printf("Produced datal!\n"); Produced data!

D oumter < 1. 3. Until the parent process signals it,
kill(pid, SIGUSR1); === after it prints its message.

while(wait_counter == 1) {}
} w Produced data!
goods_count++; 4. Afterward, the Consumed data!

) } 6. Repeat... for both parent process waits

Consumed data!

Let’s look at that again. (animated)

#include <stdio.h> // for printf M M > ./sighal-sync-example
#include <unistd.h> // for pid_t 1- Chlld Walts g y P
#include <signal.h> // for signal Produced data!

2. Parent prints
1. Sets its own wait variable

Consumed data!

static int goods_count = 0;
static int wait_counter = 0;

void signal_handler(int signum) {

wait_counter = 0; 2. Sends signal to child Produced datal!
! Child 0 Parent 0 3. Waits Consumed data!
void main(void) {
e st 3. Child prints ST
wait_counter = 1; 1. SEtS itS Wait Variable Consumed data'
while(goods_count < 5) { . :
;f (pid == @) { // Child: Consumes data 2, Sends S|gna| to parent
while(wait_counter == 1) {} .
pr‘%:tf(”cinsuTe?.data!\n\n”); 3. Wa|ts Produced data!
kill(getppid(), SIGUSRT); .
} getpp 4. Parent prlnts Consumed data!
else { // Parent: Produces data . . .
printf(‘Produced dotal \n"); 1. Sets its own wait variable roduced datal
wait_counter = 1; . . roauce ata.
KiLl(pid, SIGUSR); 2. Sends signal to child

Consumed data!

while(wait_counter == 1) {}

} 3. Waits

goods_count++;

. 5. Repeat...

If you are in a hurry... (animated)

#include <stdio.h> // for printf M M > ./sighal-sync-example
#include <unistd.h> // for pid_t 1- Chlld Walts g y P
#include <signal.h> // for signal Produced data!

2. Parent prints
1. Sets its own wait variable

static int goods_count = 0;
static int wait_counter = 0;

Consumed data!

void signal_handler(int signum) {

wait_counter = 0; 2. Sends signal to child Produced datal!
' Child @ Parent 0 3. Waits
void main(void) {
i = fork (o rhanelen; 3. Child prints
wait_counter = 1; 1. Sends signal to parent
while(goods_count < 5) { . . .
if (pid == @) { // Child: Consumes data 2, Sets |tS Walt Varlade.lNO!
P while(wait_counter == 1) {3} .
printf(”"Consumed data!\n\n"); 2 \Alnite
wait_counter = 1; _sme,) M
oo, daay: <+ Let’'s Mess Things Up!!
¥ %tm”a”* = N -
else { // Parent: Produces data . . .
printf(‘Produced dotal \n"); 1. Sets its own wait variable
wait_counter = 1; . .
kill(pid, SIGUSRT); 2. Sends signal to child
while(wait_counter == 1) {} o

) 3. Waits o

goods_count++;

) 5. OHNO!!!

The race is on!

 When you have concurrent tasks, they may compete.

* A bug in a concurrent program where the logic breaks if one process
out-paces another is called a race condition.

= That is, if the correctness requires a strict order, but that order is not
guaranteed.

 When you add synchronization you need to be careful that you ensure
that each synchronized section (called a critical section) is logically

sound.

while(wait_counter == 1) {} // START (wait) ,

printf("Consumed data!\n\n"); // do work We know we an the mterruPte.d
wait_counter = 1: // prepare to wait € between the while loop and the signal.

kill(getppid(), SIGUSR1): // END (signal) (This is our critical section)

» Today we learned the birds and bees of programs.
= They start as processes (technically children of a shell or some root process)
= They can spawn child processes using fork()
= They can load executables over top of them using execx() system calls
= And if one process ends before the other, we either get zombies or orphans.

* We also learned about inter-process communication in the form of
signals.
= These are tiny messages sent using the kill() function;received via signal().
= We can use them to synchronize events between processes.
= However, if we aren’t careful, we may introduce a bug called a race condition.
= This is when the program requires a logical order it cannot guarantee.

