
Virtual

Spring 2019/2020

wilkie

Introduction to
Systems Software

Memory

13

Spring 2019/2020

The Virtual
I just want to use this time to point out that “Virtual Reality” is an oxymoron.

2

3

Our protagonist’s journey so far…

Spring 2019/2020

• Processes have an addressable memory space.
▪ We call this an address space.

• Now, we know it has some obvious things…
▪ The code (.text)

▪ The data (.data)

▪ A stack and some available space that can be
allocated as we need it.

• We added the “Kernel” memory to our diagram.
▪ This is the OS code and data.

▪ For system processes to run, they need to be
resident in memory as well.

4

Random Access Memory

Spring 2019/2020

• Memory is a
physical device.

• It is a random
access device.
▪ Allows the

machine to access
data at any point.

• As opposed to
sequential access.

Sense Line

Control
Line

Capacitor

Dynamic RAM (DRAM)

5

Let’s get physical

Spring 2019/2020

• Physical
addressing is
when hardware
relates a program
address directly to
the memory
hardware.

• The program
addresses are the
exact physical
locations of data.

Dynamic RAM (DRAM)

6

Let’s get physical

Spring 2019/2020

• Physical addressing is
useful when you
have only a single,
simple process.

• Embedded devices
(small, specific uses)

• Think of your
toaster… or a
thermostat.

Dynamic RAM (DRAM)CPU

Memory load

Address Space

7

The problem

Spring 2019/2020

• However, we don’t always have such simple cases.
▪ A general-purpose system, like our phones and desktop machines, can run a

variety of programs.

▪ We often have multitasking operating systems running many programs at the
same time.

• When we have several processes, how to we manage memory?
▪ How to present a consistent address space?

▪ How to prevent other processes from interfering?

▪ How to prevent address space fragmentation?

• The solution, as usual: indirection: Virtual Memory.

8

Virtual vs. Reality

Spring 2019/2020

• Just like “virtual reality,” we create a
world that resembles reality, but it
really is a facsimile.

• We can provide a scheme, backed
by hardware, that allows memory
addresses to be seen by programs in
a specific place…

• Yet, those addresses differ from the
actual physical memory location.

Angela Lansbury as Jessica Fletcher, Director Lee Smith
Murder, She Wrote; “A Virtual Murder”

Universal Studios, Universal Television, 1993

9

Consistency, dear Watson.

Spring 2019/2020

• When you write a program, do you write it deliberately for the
memory layout of your OS?
▪ No!

• The OS loads executables to specific places in memory.
▪ The program expects data to be in a specific place.

▪ The program expects memory to be “large enough.”

• So, we will look at one strategy to define well-known stretches of
memory (virtually) that are mapped to physical memory (in reality.)

Spring 2019/2020

Segmentation
It’s not just a type of fault.

10

11

Segmentation

Spring 2019/2020

• Segmentation is a virtual
memory system where spans
of physical memory called a
segment are given a physical
base address.

• The application refers to the
virtual address by its segment
index which is translated by
hardware into the real address
behind-the-scenes.

Index
Physical

Base
Size

Segment Table

• Here, we have a segment table
which defines two segments.
▪ The first segment defines a range of

addresses from to
.

▪ Second is to

12

Address Translation

Spring 2019/2020

• The Memory Management Unit
(MMU) is a hardware component of
your CPU that translates virtual
addresses to physical addresses.

• Here, it translates based on the
segment table.

CPU

Address Space

Index
Physical

Base
Size

Segment Table

Dynamic RAM (DRAM)

MMU

13

Addressing the Code Segment

Spring 2019/2020

• The MMU translates
addresses by looking
up the segment index
and adding the base to
the given offset.

Dynamic RAM (DRAM)CPU

Memory load

Address Space

MMU

Index
Physical

Base
Size

Segment Table

14

Addressing the Data Segment

Spring 2019/2020

• The same offset might
refer to a different
physical address
depending on the
index and the table.

Dynamic RAM (DRAM)CPU

Memory load

Address Space

MMU

Index
Physical

Base
Size

Segment Table

15

Addressing… nothing

Spring 2019/2020

• However, if the MMU
cannot translate an
address, it will fault.

• This is a segmentation
fault.

Dynamic RAM (DRAM)CPU

Memory load

Address Space

MMU

Index
Physical

Base
Size

Segment Table

16

Addressing… out of range

Spring 2019/2020

• This is true even if the
address calculation results
in an address that is
allocated to another
segment.

• Fault: It goes beyond the
size of the segment.

Dynamic RAM (DRAM)CPU

Memory load

Address Space

MMU

Index
Physical

Base
Size

Segment Table

17

It’s for your pwn protection

Spring 2019/2020

• The lie only operates if processes cannot see each other.
▪ It’s not just about address spaces not overlapping…

▪ It is also for security purposes!

• You don’t want your login process to be snooped on by another.

• Yet, also, you don’t want your own program to do ridiculous things it
should not do!
▪ Should your program be able to write to constant values?

▪ Should your program be able to execute instructions in the segment?

• Virtual memory generally also has ways to arbitrate access.

18

Amending to add access control

Spring 2019/2020

• The MMU can also arbitrate access
to the segments by adding access
control to the segment table.

• Here, a in the table denotes the
action is allowed.
▪ Writes allowed.
▪ Can be executed.

CPU

Address Space

I
Physical

Base
Size W X

Segment Table

Dynamic RAM (DRAM)

MMU

19

Writing to the Code Segment? NO!!

Spring 2019/2020

• When the MMU
decides if an action is
allowed, it looks at the
access control bits in
the table.

Dynamic RAM (DRAM)CPU

Memory store

Address Space

MMU

I
Physical

Base
Size W X

Segment Table

20

Executing the Data Segment? ABSOLUTELY NOT!!

Spring 2019/2020

• This feature can be
used to effectively
prevent many buffer
overflow attacks.

• Here, you can’t
execute application
data.

Dynamic RAM (DRAM)CPU

Instruction Fetch

Address Space

MMU

I
Physical

Base
Size W X

Segment Table

21

A Problem Remains: Fragmentation

Spring 2019/2020

• In a purely segmented system, you can map
regions of physical memory.

• However, the segments of virtual memory
are continuous in physical memory and
cannot overlap other physical regions on the
system.

• We may run out of room as we run more
processes…

• … and as processes finish, they may leave
awkward gaps in memory. (external
fragmentation)

???

Spring 2019/2020

Paging
This won’t give you paper cuts... I don’t think.

22

23

Making things… smaller.

Spring 2019/2020

• So, segmentation helped us isolate
processes by allowing a virtual address
space where large spans of memory
were mapped continuously to a
physical address range.

• Since segments are large, managing
that space is difficult.

• So why don’t we make the segments…
small? And use more of them?

• Welcome to the wonderful world of
pages!

Process’s Virtual
Address Space

24

Paging Mr. Herman… Mr. P. W. Herman…

Spring 2019/2020

• Each segment is itself divided into
smaller pieces called a page.

• This allows us to even interleave the
different pages that make up a section
of memory.

• Because of this interleaving and that
every page is the same exact size,
removing a page leaves room for
exactly one page… no fragmentation.
▪ At the cost of over-allocating, if we need

less space than a single page.
Process’s Virtual
Address Space

Removing this
page left room big
enough for… a new

page!

Allocating this:

25

Page Tables

Spring 2019/2020

• There are many strategies for
maintaining the metadata that maps
virtual addresses to physical
addresses.

• The first we will look at is the simple
page table.

• In this strategy, we will maintain a
data structure that maps virtual
addresses to physical addresses.

Page Index Page Offset

Virtual Address

Physical Address

Page Index Page Offset

CPU

26

Address Fields

Spring 2019/2020

• First, you need to set a static
page size.
▪ Every page is the same size.

• Part of the virtual address is the
offset, which is retained when
the MMU translates the physical
address.
▪ This is determined by the page size.

• The remainder is used to
determine the entry in the table.

Page Index Page Offset

Virtual Address

Valid Write Execute Page Address

Physical Address

Process Page Table

Page Index Page Offset

Index

27

It’s not your fault…

Spring 2019/2020

• If there is no entry for the given
page or the entry isn’t valid…
▪ Or if an operation is not allowed.

• This signals a page fault.
▪ Similar to a segmentation fault.

▪ In fact, many OSes retain that term
to this day, even when it is a page
fault, technically.

• This is a generic error that is
triggered by the MMU on such
invalid accesses.

Valid Write Execute Page Address

Process Page Table

Index

DRAM

CPU

MMU
Virtual Address

X

Page Index Page Offset

Virtual Address

28

Process Isolation

Spring 2019/2020

• To give each
process its own
virtual address
space, each process
gets its own page
table.

• The CPU keeps
track of which page
table is active.

Page Table
Address

Valid Write Execute Page Address

Process Page Table

CPU

MMU
Virtual Address

DRAM

Physical Address

Index

29

Context Switching: Getting to the root of it.

Spring 2019/2020

• When an Operating
System goes from one
process to another, it
performs a context
switch.

1. Store registers
(including stack
pointer and program
counter) to memory.

2. Determine next
process to run.

3. Load those registers
from memory.
Switch address
space.

4. Jump to old program
counter. Go!

.text

.data

.bss

stack

CPU State A:
Registers

,

Page Table
Address A

Process A

.text

.data

.bss

stack

CPU State B:
Registers

,

Page Table
Address B

Process B

.text

.data

.bss

stack

CPU State C:
Registers

,

Page Table
Address C

Process C

CPU

MMU
Virtual Address Physical Address

DRAM

30

Addressing the granularity issue

Spring 2019/2020

• The table size has to do with how big
you make each page.
▪ The bigger the page, the less entries you’ll

need for your process.

▪ However, the more internal
fragmentation if you do not need some of
that space!

• For a page size of 𝐾
▪ Page offset will have log2𝐾 bits.

▪ Page index will be the remaining bits.

• For 32-bit address spaces:
▪ Assuming table entries are also 32-bits.

Page Index Page Offset

Virtual Address

𝐾 = 216𝐾𝑖𝐵 = 64𝐾𝑖𝐵
Mapping 2MiB takes 32 pages.

Page table size: 216 ∗ 4𝐵 = 256𝐾𝑖𝐵

Page Index Page Offset

Page Index Page Offset

𝐾 = 212𝐾𝑖𝐵 = 4𝐾𝑖𝐵
Mapping 2MiB takes 512 pages.
Page table size: 220 ∗ 4𝐵 = 4𝑀𝑖𝐵

𝐾 = 28𝐵 = 256𝐵
Mapping 2MiB takes 8192 pages.
Page table size: 224 ∗ 4𝐵 = 64𝑀𝑖𝐵

31

Inverted Page Tables

Spring 2019/2020

• There are many strategies for
maintaining the metadata that maps
virtual addresses to physical
addresses.

• Now we will look at the inverted page
table.

• In this strategy, we switch things
around: we have just one table for the
whole system and an entry for every
possible physical page.

Page Index Page Offset

Virtual Address

Physical Address

Page Index Page Offset

CPU

32

Address Fields

Spring 2019/2020

• In this case, you have a single
table for the entire system.

• When translating, you scan
the table to find an entry that
contains the page index.
▪ This may be intensive!

• When you do, and it is valid,
make a note of the index of
the entry. That is the physical
page index.

Page Tag Page Offset

Virtual Address

Page Tag Valid Write Execute

Physical Address

Inverted Page Table

Page Index Page Offset

Index

33

Process Isolation

Spring 2019/2020

• Many processes exist, and
each may use the same
virtual address.
▪ And expect a different physical

page!

• Since there is only one table
on the entire system, we
have to disambiguate.

• Therefore, we also tag by the
process identifier.

Page Tag Page Offset

Virtual Address

Page Tag Process ID Valid Write Execute

Physical Address

Inverted Page Table

Page Index Page Offset

Index

Process ID

34

What’s the size??

Spring 2019/2020

• One nice feature of an inverted
page table is the size is bound.

• Since an inverted page table has
an entry for every possible
physical page…
▪ You can simply allocate the table

of a fixed size big enough to
represent all of physical memory.

• The size of the table is the
product of the entry size and
the number of physical pages.

Page Tag Process ID Valid Write Execute

Inverted Page Table

If the page size (K) is 4KiB and our
system has 16GiB of RAM, how big

is the inverted page table?

16𝐺𝑖𝐵 / 4𝐾𝑖𝐵 =
234

212
= 222 𝑝𝑎𝑔𝑒𝑠

222 𝑝𝑎𝑔𝑒𝑠 ∗ 32 𝑏𝑖𝑡𝑠 = 222 𝑝𝑎𝑔𝑒𝑠 ∗ 4𝐵

224𝐵 = 24220𝐵 = 16𝑀𝑖𝐵

35

Trade-offs. Trade-offs everywhere!

Spring 2019/2020

• What is best?

• Inverted page tables are very space efficient since entries are ordered
by physical page.
▪ However, translations mean scanning the table for entries… a time-consuming

task. 𝑂(𝑛) (Can implement with a hashing function, see your OS course.)

▪ Normal page tables are a constant time lookup, 𝑂 1

• Since they are indexed by virtual address, normal page tables require
ordered virtual memory to be space efficient.
▪ Gaps in virtual memory mean lots of page table entries going unused.

▪ Perhaps we can solve this problem…

… Who even knows.

36

Multi-level Page Tables (Not a pyramid scheme)

Spring 2019/2020

• Perhaps we can allow
gaps in virtual memory
if we use MORE
INDIRECTION!

• The use of multiple
levels of indirection
gives a lot of flexibility
in defining the virtual
address space.

• Each page table is the
size of a page. ()

2nd Level Page Table

Page Table
Root Address

1st Level Page Table

32-bit Virtual Address ()

Second Index First Index Page Offset

DRAM

37

Indirection times two

Spring 2019/2020

• We split up the virtual
address into further
index fields.

• The top-level index
yields the real
physical address of
the page containing
the next page table.

• This table is used to
determine the referred
physical page.

Valid Write Execute Page Table Address

2nd Level Page Table

Page Table
Root Address

Valid Write Execute Page Address

1st Level Page Table

Index

32-bit Virtual Address ()

Second Index First Index Page Offset

Index

DRAM

(Real)

38

Home, home on the [memory] range

Spring 2019/2020

• Each entry in the top-
level page table
represents an entire
range of memory.

• Here, the 2nd level index
is . This represents all
virtual memory addresses
with the most significant
binary digits:

Valid Write Execute Page Table Address

2nd Level Page Table

Page Table
Root Address

Valid Write Execute Page Address

1st Level Page Table

Index

32-bit Virtual Address ()

Second Index First Index Page Offset

Index

(Real)

Maps 4KiB virtual page starting at 0x007ff000

Maps 4KiB virtual page starting at 0x00401000

Maps 4KiB virtual page starting at 0x00400000

. . .

39

It’s a sparse world, after all

Spring 2019/2020

• By marking entries
invalid in the top-level
page table, this
invalidates the entire
memory range.

• Attempting to access
such a virtual address
would immediately page
fault.

Valid Write Execute Page Table Address

2nd Level Page Table

Page Table
Root Address

Index

32-bit Virtual Address ()

Second Index First Index Page Offset

No 1st level table.

Therefore: all virtual addresses between
and

are not mapped (and are not referenceable.)

40

A got a sparsity jacket, but it was just the sleeves.

Spring 2019/2020

• Given a 32-bit virtual address.
▪ And multi-level paging with two

levels, each index 10 bits.

• What is the page size?
▪ 32 − 10 − 10 = 12 𝑏𝑖𝑡𝑠 for offset

▪ 212𝐵 = 4𝐾𝑖𝐵 (4 Kibibytes)

• Given the root page table here,
and assuming unknown entries
are invalid, what virtual address
ranges are potentially used?
▪ Let’s find out…

Valid Write Execute Page Table Address

2nd Level Page Table

Index

32-bit Virtual Address

Second Index First Index Page Offset

41

Continuing: Filling in the blanks

Spring 2019/2020

• Given the root page table here, and
assuming unknown entries are invalid, what
virtual address ranges are potentially used?

Valid Write Execute Page Table Address

2nd Level Page Table

Index

32-bit Virtual Address

Second Index First Index Page Offset

Maps virtual pages from to

Maps virtual pages from to

Maps virtual pages from to

to

to

to

42

Best of both worlds.

Spring 2019/2020

• With multi-level page tables, we can
represent large ranges of memory
with gaps, much like segments!
▪ All the while, we can satisfy each

individual page in this “segment” by
interleaving them throughout physical
ram. (flexibility, no external
fragmentation)

• Modern architectures often use
multi-level page tables.
▪ x86-64 uses a 4 level page table!

Maps virtual pages from to

Maps virtual pages from to

Maps virtual pages from to

2nd Level Page Table

Page Table
Root Address

1st Level Page Table

DRAM

32-bit Virtual Address

Second Index First Index Page Offset

Segments?
(kinda)

43

Summary

Spring 2019/2020

So, we have many complex processes running at the same time.

• How to present a consistent address space?
▪ Indirection using segments or page tables.

▪ We translate virtual addresses to physical addresses.

• How to prevent other processes from interfering?
▪ We can mark segments or individual pages with access controls. (Read-only,

non-execute, etc.)

• How to prevent address space fragmentation?
▪ We give each process its own address space.

▪ When we context switch, we switch address spaces.

