
The Memory

Spring 2019/2020

wilkie

Introduction to
Systems Software

Hierarchy

14

Spring 2019/2020

This is a Pyramid Scheme
But this knowledge is a safe investment.

2

3

Wanting Moore and Moore

Processors and memory work together but improve at different rates.
Memory was initially faster than CPU, but its innovation was slower.

T
h

ro
u

g
h

p
u

t

The CPU overtakes
memory performance

Innovation starts to slow

Spring 2019/2020

4

Cost of DRAM/Disk in 2020

Spring 2019/2020

• 8GiB $35 - 70

• 16GiB $70 - 100

• 32GiB $140 - 300

• 1TiB $50 – 80

• 8TiB $200 - $300

• 16TiB $400 - 500

5

The memory hierarchy

Faster,
Denser
Expensive

Cheaper,
Slower,
Larger

Registers

L1 Cache

L2 Cache

(DRAM) Main Memory

Local Disk

Distributed Storage

(Don’t forget it!) Tape

Spring 2019/2020

6

The hierarchy of speed

Faster,
Denser
Expensive

Cheaper,
Slower,
Larger

Registers

L1 Cache

L2 Cache

(DRAM) Main Memory

Local Disk

Distributed Storage

(Don’t forget it!) Tape

Spring 2019/2020

DRAM is simply
too slow

A “cache” is used to hold
useful data closer than

main memory to
improve speed.

Spring 2019/2020

Memory Caching
Cache: Another thing us teachers could really use more of.

7

8

Experiment: Scientific Maths

Spring 2019/2020

9

Practical Performance

Spring 2019/2020

• Caching is necessary for the
utility of computers.
▪ The CPU/Memory gap increases

(The Memory Wall)

• In order to actually use these fast
CPUs, we need to improve the
apparent speed of RAM.
▪ Programs use memory a whole lot.

▪ The bottleneck would grind
performance to the point where
CPUs cannot improve.

“That’s a nice CPU you have there… it’d be
terrible if something were to happen to it.”

10

The problem: data is faaaaar away

Spring 2019/2020

• Let’s say you want to read a book.

• You check it out of the library.
▪ You have to go there.

▪ Find the book.

▪ Maybe take the bus back.
• Wait in traffic.

• Now it sits on your desk.
▪ As long as it is near you, it’s easy to access the

information.

▪ Yet, if you need another book…
• You would take the book ALL THE WAY back!

(bare with me)

11

Caching: Keeping things close

Spring 2019/2020

• Let’s say you want to read a book.
▪ It’s not on your bookshelf.

• So, still have to check it out of the library.
▪ You gotta go there. Find the book. Etc.

▪ Take the bus back.

• Now it sits on your desk.
▪ As long as it is near you, it is easy to access the

information.

▪ When we need another book… we put it aside.
• Maybe a bookshelf.

▪ The next time we need it, it will be nearby.

12

The metaphorical cache

Spring 2019/2020

• The bookshelf is a cache.
▪ It holds information that you might want later.

• It is [much] smaller than a library, but faster
to retrieve things.

• However, it is small. Placing a new book on
the shelf may require taking an old book off.

13

• RAM is the library. It is far away and getting
stuff from there is slow.

• To better handle the performance gap
between the CPU and memory we add a
smaller, fast memory near the CPU.

• This is the CPU cache.

Memory cache (CPU)

Spring 2019/2020

14

Data, the journey

Spring 2019/2020

• When data is requested, the goal is to read
a word into a CPU register.

• The CPU first contacts the cache and asks
if it has a copy.
▪ If it does… that is a cache hit, and, well, that was

easy. Just copy that value into the register.

• If it does not, this is a cache miss.
▪ It will then contact the next component in the

memory hierarchy. (RAM)

• Ram copies the value to cache, and the
cache copies the value to the register.

15

8

8

Missing the mark

Spring 2019/2020

• When the CPU requests memory in an
empty cache, the data obviously won’t be
available locally.

• This is a compulsory miss, a “miss” due to
the first access of a block of data.
▪ Also known as a “cold miss.”

• These are, as they suggest, completely
unavoidable.
▪ They always incur the high penalty associated

with a memory read.

0 1 2 3 4

5 6 7 8 9

A B C D E

8

16

8

8

8

Hitting the target

Spring 2019/2020

• When the CPU requests memory that
happens to already be in the cache, the
data is read locally (quickly).

• This is a cache hit.
▪ Your best-case scenario.

• These avoid having to communicate at all
with memory.
▪ No penalty taken for reading/writing to

memory.

▪ Very cheap in terms of time.

0 1 2 3 4

5 6 7 8 9

A B C D E

17

8E4 6 C 1

8

A cache half full…

Spring 2019/2020

• As the CPU requests memory, the cache
will fill to satisfy each compulsory miss.

• When it fills up completely, it will have no
further room for the next miss.

• On a miss, it requests the data from
memory.
▪ Yet, where does it go?? We must remove one.

• This is a capacity miss. The memory
requirements of the program are larger
than the cache.

0 1 2 3 4

5 6 7 8 9

A B C D E

8

18

84 6 C 1

8

Looking closer…

Spring 2019/2020

• It is difficult to know what block of data
to omit from this cache on such a miss.
▪ However we can exploit the common locality

patterns of programs to improve our cache.

• There is temporal locality: accessed data
is likely to be used again in near future.
▪ This is what caches generally capture.

• However, spatial locality is also likely:
data is often grouped together.
▪ When we access a struct field, we will often

access another which is nearby in memory.

0 1 2 3 4

5 6 7 8 9

A B C D E

19
8

Exploring space…

Spring 2019/2020

• We would like to keep data that is
adjacent in memory in the cache, together,
at the same time.

• To do this, we “hash” the address. This is
used to determine the cache slot.
▪ Just a fancy way to say: we divide the address

by the cache size and use the remainder.

• Every 0th block, 1st block, 2nd block, etc.

• The 5th block (in this example) goes to the
slot, the 6th goes to the slot, and so on.

0 1 2 3 4

5 6 7 8 9

A B C D E

20
8

Direct and to the point…

Spring 2019/2020

• Let’s read addresses 3, 4, 5, 6, and 7 (in
that order) from memory.

• Reading address 8 next incurs a capacity
miss, but it evicts the address that is
furthest away from the others.
▪ This type of cache is good for programs that

read through data sequentially.

▪ That is because such programs will always
remove the least recently used block on a miss,
as shown here.

• Because every address has a specific cache
slot, this is called a direct-mapped cache.

0 1 2 3 4

5 6 7 8 9

A B C D E

3

3

4

4

5 6 7

5 6 7

8

8

21
A

Missing your connection…

Spring 2019/2020

• Let’s consider an antagonist pattern.
▪ What is the worst case for this cache?

• If we read every 5th address in our memory
in order, we would overwhelm our direct-
mapped cache.
▪ Let’s access 0, 5, A in that order.

• Accessing address 0 is a compulsory miss.
▪ Address 5, however, is a miss.

▪ But our cache isn’t full!!

• A miss that occurs even though your cache
could fit the block is called a conflict miss.

0 1 2 3 4

5 6 7 8 9

A B C D E

0

5

A

05A

22

How big is that block?

Spring 2019/2020

• Spatial locality is SO prevalent that it
makes a whole lot of sense to pull more
data than is requested.
▪ If we request a word (8 bytes) from memory,

and we have a cache miss, let’s pull 8 words at
a time (64 bytes).

• Therefore, the blocks visualized to the
right can have a size, called the block size.
▪ The bigger the block, the better spatial locality

will become.

▪ However, the more time it takes to copy from
memory and the higher penalty if you throw it
away on a miss!

0 1 2 3 4

5 6 7 8 9

A B C D E

64 bytes

8 bytes

23

2

2

Block size helps locality

Spring 2019/2020

• When we request an address from our
cache, we are requesting the block that
contains that address.
▪ Here, Block 0 contains byte addresses 0x00

through 0x39. Block 1 is 0x40 to 0x79, etc.

• Let’s request 64-bit words in order starting
at address 0x40 (Block 1)
▪ There are 8 words in each cache block.

▪ Therefore, we have only one compulsory miss.

▪ And then we have 7 cache hits!!

• If we request the ninth word, we will be at
address 0x80 (and a compulsory miss.)

0 1 2 3 4

5 6 7 8 9

A B C D E

64 bytes

1

1

24

Once again… A Tale of Two C… um… programs

Spring 2019/2020

Allocates matrices.
(Array of arrays)

Copies one matrix to another.
(data itself is uninitialized.)

Iterates through column.
(Other code goes through row)

25

Once again… A Tale of Two C… um… programs

Spring 2019/2020

• We will simplify by looking at a 4x4 matrix.
▪ We want to get the addresses being used to

see the access pattern. (Goes across row)

26

Once again… A Tale of Two C… um… programs

Spring 2019/2020

• We will simplify by looking at a 4x4 matrix.
▪ Notice the different type of access pattern.

▪ (Goes down the column)

27

The Antagonist

Spring 2019/2020

• One program reads words sequentially in
memory (good spatial locality)
▪ The other reads each word as far apart as

possible! (worst spatial locality)

• Let’s look at making the matrices much
larger! Let’s make each row span 256 Bytes.
(4 blocks, which is the size of our cache!)

0 1 2 3

Cache size: 256B
64 bytes per block.

This cache
item holds

, ,
, etc

28

Cache Performance

Spring 2019/2020

▪ Why? Well…

▪ Our “slow” program effectively did not use cache, and it was 10 times slower.

• Simply: Caches offer much faster accesses than DRAM.
▪ Perhaps 100s of times faster.

• Consider the math:
▪ miss rate (MR): Fraction of memory accesses not in cache.

▪ hit rate (HR): Fraction of memory accesses found in cache. (H𝑅 = 1 −𝑀𝑅)

▪ hit time (HT): Time it takes to read a block from cache to CPU. (Best case)

▪ miss penalty (MP): Time it takes to read from main memory to cache.

• Recall that caches make computers practical.

29

Cache Performance

Spring 2019/2020

• Consider the math:
▪ miss rate (MR): Fraction of memory accesses not in cache.

▪ hit rate (HR): Fraction of memory accesses found in cache. (H𝑅 = 1 −𝑀𝑅)

▪ hit time (HT): Time it takes to read a block from cache to CPU. (Best case)

▪ miss penalty (MP): Time it takes to read from main memory to cache.

• Average Memory Access Time (AMAT): The time it takes, on average,
to perform a memory request, considering the cache performance.
▪ 𝐴𝑀𝐴𝑇 = 𝐻𝑇 +𝑀𝑅 ×𝑀𝑃

• Assuming a HT of 1 clock cycle and a MP of 100 clock cycles…
▪ A HR of 97%: 𝐴𝑀𝐴𝑇 = 1 + 0.03 × 100 = 4 𝑐𝑦𝑐𝑙𝑒𝑠

▪ A HR of 99%: 𝐴𝑀𝐴𝑇 = 1 + 0.01 × 100 = 2 𝑐𝑦𝑐𝑙𝑒𝑠

▪ A hit-rate jump from just 97% to 99% doubles memory performance. Wow.

• Recall that caches make computers practical.

30

Cache Layout Summary

Spring 2019/2020

• We have seen two types of cache layouts.
▪ A freeform cache: blocks go wherever. ¯_(ツ)_/¯

• Also called a fully associative cache.

▪ A direct-mapped cache: blocks go into slots.

• They have their own trade-offs, and as
usual…
▪ We can have a hybrid approach!

• Here, each cache slot has multiple bins.
▪ You only need to evict when you fill up the bins.

Best of both worlds!

▪ Which do you evict? (Hmm… difficult choice.)

31

Associativity

Spring 2019/2020

• With an associative cache, the address
determines the slot.
▪ Much like a direct-mapped cache.

▪ However, the slot has a number of bins.

▪ Any bin in the slot is viable for a block.

▪ The number of bins is the number of “ways”
• A direct-mapped cache is a 1-way cache.

• When the cache determines if the block is in
the cache already…
▪ It determines the slot.

▪ It scans every bin for a block tagged with that
exact address.

▪ Therefore, the cache performance degrades as you
increase the number of ways.

32

Summary

Spring 2019/2020

• The notion of storing data is a complicated one.
▪ Different technologies have different strengths (and costs)

▪ Often trade-off between:
• fast / small, expensive

• slow / big, cheap

▪ Hardware designs attempt to accommodate a variety of technologies.
• Often using fast/small memories to act as a “cache” for slower ones.

• Caches can be arranged in several ways:
▪ Blocks go anywhere (fully-associative)

▪ Blocks go in particular slots (direct-mapped / 1-way associative)

▪ Hybrid: Blocks go to particular slots… but then can go in any bin in that slot.

• Caches attempt to exploit temporal and spatial locality of programs.
▪ And even a slight improvement to hit rate can dramatically improve overall

performance of a program!

