THE MEMORY Introduction to

Systems Software

HIERARCHY

wilkie

T

THIS IS A PYRAMID SCHEME

But this knowledge is a safe investment.

B

Wanting Moore and Moore

Processors and memory work together but improve at different rates.

10000

1000

100

Throughput
s

0.1

0.01

Memory was initially faster than CPU, but its innovation was slower.

Innovation starts to slow —

mmu®
umu®
smu®
(L LA
asmu®
sun®
asmu®
mun®
smu®
mun®
smun®
puun
sun®
PELA

\The CPU overtakes
memory performance

1950 1960 1970 1980 1990 2000 2010 2020

Cost of DRAM/Disk in 2020

- 8GiB $35-70 - 1TiB $50 - 80
- 16GiB $70-100 - 8TiB $200 - $300
- 32GiB $140- 300 - 16TiB $400 - 500

nanoseconds milliseconds

The memory hierarchy

A Registers 1o [

Faster, / \ 11Cache - TP

Denser
Expensive / L2 Cache

Slower,
L o

(Don't forget it!) Tape

The hierarchy of speed

A “cache” is used to hold .
A useful data closer than Registers 3 b |
main memory to %
Faster, / \ improve speed. L1 Cache Q
Denser
Expensive DRAM is simply L2 Cache

too slow w
Cheaper, (DRAM) Main Memory Fmxm
Slower,

MEMORY CACHING

Cache: Another thing us teachers could really use more of.

Experiment: Scientific Maths

#include <stdlib.h> // for malloc
#define LIMIT (2048 * 10)

int main(void) {
int i, j;
intx src[LIMIT];
int* dst[LIMIT];

for (i = @; i < LIMIT; i++) {
src[i] = malloc(sizeof(int) * LIMIT);
dst[i] = malloc(sizeof(int) * LIMIT);

3

for (j = 0; j < LIMIT; j++) {
for (i = @; i < LIMIT; i++) {
dst[j1[i] = src[j1[i];
3
3

return 0;

./locality-test-A

Om1.803s
Oom1.123s

#include <stdlib.h> // for malloc <%
CPARTY
#define LIMIT (2048 * 10) 4*
o ¥\ %
o X 2N\
int main(void) { S—
int i, j; ¥ ‘

int* src[LIMIT]; TIM!
int* dst[LIMIT];

for (i = @; i < LIMIT; i++) {
src[i] = malloc(sizeof(int) * LIMIT);
dst[i] = malloc(sizeof(int) * LIMIT);
}

for (j = 0; j < LIMIT; j++) {
for (i = @; i < LIMIT; i++) {
dst[il[j] = src[il[j];
}
}

return 0;
./locality-test-B

0m20.374s
0m19.429s

omo.677s

omo.898s

Practical Performance

» Caching is necessary for the
utility of computers.

= The CPU/Memory gap increases
(The Memory Wall)

“That’s a nice CPU you have there... it'd be
e In order to actually use these fast terrible if something were to happen to it.”
CPUs, we need to improve the
apparent speed of RAM.
= Programs use memory a whole lot.

= The bottleneck would grind
performance to the point where
CPUs cannot improve.

The problem: data is faaaaar away

- Let’s say you want to read a book. @

* You check it out of the library.
= You have to go there.
= Find the book.

= Maybe take the bus back.
« Wait in traffic.

* Now it sits on your desk.

= As long as it is near you, it's easy to access the
information.
= Yet, if you need another book...

* You would take the book ALL THE WAY back!
(bare with me)

Caching: Keeping things close

- Let’s say you want to read a book. i
= |t’'s not on your bookshelf.]@
* So, still have to check it out of the library. :
= You gotta go there. Find the book. Etc.
= Take the bus back. .
v
* Now it sits on your desk. !i"ﬁ'!'l |
o . o | | Ii
= As long as it is near you, it is easy to access the -~
information. :

= When we need another book... we put it aside. v

* Maybe a bookshelf.
= The next time we need it, it will be nearby.

The metaphorical cache

* The bookshelf is a cache.
= |t holds information that you might want later.

* It is [much] smaller than a library, but faster

to retrieve things. I. 0 I- I
- However, it is small. Placing a new book on !illﬁl!llli

the shelf may require taking an old book off. Y YT

Memory cache (CPU)

 RAM is the library. It is far away and getting
stuff from there is slow.

* To better handle the performance gap | |
between the CPU and memory we add a I|||||||I I““““
smaller, fast memory near the CPU. I"EII“II

* This is the CPU cache.

Data, the journey

 When data is requested, the goal is to read mov (%rbx), %rax
a word into a CPU register.

 The CPU first contacts the cache and asks :
if it has a copy. :
= |f it does... that is a cache hit, and, well, that was
easy. Just copy that value into the register. '
* |f it does not, this is a cache miss. W
= [t will then contact the next component in the

memory hierarchy. (RAM)

* Ram copies the value to cache, and the
cache copies the value to the register.

Missing the mark

* When the CPU requests memory in an
empty cache, the data obviously won't be
available locally.

 This is a compulsory miss, a “miss” due to
the first access of a block of data.
= Also known as a “cold miss.”

* These are, as they suggest, completely
unavoidable.

= They always incur the high penalty associated
with a memory read.

giﬁﬁ@ CPU Cache
v
%rax (::)

mov (0x8), %rax

Hitting the target

* When the CPU requests memory that
happens to already be in the cache, the
data is read locally (quickly).

000,
000,
* This is a cache hit. @@
olol®
=

= Your best-case scenario.

* These avoid having to communicate at all
with memory.

= No penalty taken for reading/writing to
memory.

v
= Very cheap in terms of time. %rax @

mov (0x8), %rax

A cache half full...

* As the CPU requests memory, the cache
will fill to satisfy each compulsory miss.

* When it fills up completely, it will have no

©
®
further room for the next miss. @
O,

* On a miss, it requests the data from
memory.

i ?7?
= Yet, where does it go?? We must remove one. m CPU Cache

* This is a capacity miss. The memory

v
requirements of the program are larger o
than the cache. e @

mov (0x8), %rax

Looking closer...

* It is difficult to know what block of data
to omit from this cache on such a miss.

= However we can exploit the common locality
patterns of programs to improve our cache.

00}

* There is temporal locality: accessed data
is likely to be used again in near future.
= This is what caches generally capture.

® OV

®
OO0

O OO
OO

- However, spatial locality is also likely: @ CPU Cache
data is often grouped together. .
= When we access a struct field, we will often v

access another which is nearby in memory. o rax

Exploring space...

 We would like to keep data that is
adjacent in memory in the cache, together,

at the same time. @ @
©]0,
®

* To do this, we “hash” the address. This is
used to determine the cache slot.

= Just a fancy way to say: we divide the address 0 : 3 4
by the cache size and use the remainder. O O O O
« Every Oth block, 1t block, 2" block, etc. &g CPU Cache

» The 5t block (in this example) goes to the
0 slot, the 6t" goes to the 1 slot, and so on.

Direct and to the point...

* Let’s read addresses 3, 4, 5, 6, and 7 (in
that order) from memory.

« Reading address 8 next incurs a capacity
miss, but it evicts the address that is
furthest away from the others.

= This type of cache is good for programs that
read through data sequentially.

= That is because such programs will always
remove the least recently used block on a miss,
as shown here.

* Because every address has a specific cache
slot, this is called a direct-mapped cache.

Missing your connection...

« Let’s consider an antagonist pattern.
= What is the worst case for this cache?

* If we read every 5th address in our memory
in order, we would overwhelm our direct-
mapped cache.

= L et’s access O, 5, A in that order.

* Accessing address O is a compulsory miss.
= Address 5, however, is a miss.
= But our cache isn’t full!!

* A miss that occurs even though your cache
couldfit the block is called a conflict miss.

How big is that block?

* Spatial locality is SO prevalent that it
makes a whole lot of sense to pull more
data than is requested.

= |f we request a word (8 bytes) from memory,
and we have a cache miss, let’s pull 8 words at
a time (64 bytes).

* Therefore, the blocks visualized to the
right can have a size, called the block size.

= The bigger the block, the better spatial locality
will become.

= However, the more time it takes to copy from
memory and the higher penalty if you throw it
away on a miss!

000
00}
OO0
OO

64 bytes

Or <000
Ow
QA

CPU Cache

O-
L0O-

v
%rax O «38 bytes

Block size helps locality

* When we request an address from our
cache, we are requesting the block that
contains that address.

OO
= Here, Block O contains byte addresses OxO0 @ @
®

through Ox39. Block 1 is 0x40 to Ox79, etc.

. . . w
* Let’s request 64-bit words in order starting 64 bytes
at address 0x40 (Block 1) 0 3 4
= There are 8 words in each cache block.
= Therefore, we have only one compulsory miss. O @ O O
= And then we have 7 cache hits!! g CPU Cache

. . v
* If we request the ninth word, we will be at
address 0x80 (and a compulsory miss.) srax O

Once again... A Tale of Two C... um... programs

#include <stdlib.h> // for malloc #include <stdlib.h> // for malloc
#define LIMIT (2048 * 10) #define LIMIT (2048 * 10)
int main(void) { int main(void) {
int i, J; int i, J;
intx src[LIMIT]; int* src[LIMIT];
int* dst[LIMIT]; intx dst[LIMIT];
for (i = 0; i < LIMIT; i++) { for (i = @; i < LIMIT; i++) {
src[i] = malloc(sizeof(int) * LIMIT); src[i] = malloc(sizeof (int) * LIMIT);
dst[i] = malloc(sizeof(int) * LIMIT); dst[i] = malloc(sizeof(int) * LIMIT);
) w . 3
Allocates matrices.
for (j = 0; j < LIMIT; j++) { for (j = 0; j < LIMIT; j++) {
for (i = @; i < LIMIT; i++) { (Array Of arraYS) for (i = @; i < LIMIT; i++) {
dst[j1[i] = src[j1[i]; dst[il[j] = srcl[illj];
} w . .) %
) Copies one matrix to another.) Iterates through column.
, (data itself is uninitialized.) _ (Other code goes through row)
return 0; return 0;
} }

./locality-test-A ./locality-test-B

Om1.803s Om20.374s
om1.123s om19.429s
omo.677s omo.898s

Once again... A Tale of Two C... um... programs

#include <stdlib.h> // for malloc

* We will simplify by looking at a 4x4 matrix.

// We will look at a 4 by 4 matrix = We want to get the addresses being used to
see the access pattern. (Goes across row)

int main(void) {

int i, j;
tntx srcl4l; src[0] ~ 0x80 ~ ©Ox84 = 0x88 Ox8¢c
intx dst[4];
for (i = 0; i< 4; i++) { srcl1] = ox90 0x94 0x98 0x9c
src[i] = malloc(sizeof(int) * 4);
dst[i] = malloc(sizeof(int) * 4); src[2] Oxao Oxa4 0xa8 Oxac
3
for (G = 0; j < 4; j++) { src[3] 0xb0o Oxb4 Oxb8 Oxbc

for (i = 0; 1 < 4; i+t) {
dst[jl[i] = srcljllil];
}
h;
Ox80 =» 0x84 =» Ox88 =¥ Ox8c =¥ 0x90 =» 0x94 =» 0x98 = Ox9c =» Oxad =¥ ¢«
return 0; src[0]1[e] src[0]1[2] src[1]1[0] src[11[2] src[2][0]
¥ src[Q][1] src[Q][3] src[1][1] src[1]1[3]

Once again... A Tale of Two C... um... programs

#include <stdlib.h> // for malloc

* We will simplify by looking at a 4x4 matrix.

= Notice the different type of access pattern. // We will look at a 4 by 4 matrix
= (Goes down the column) int main(void) {
int i, j;
src[0] | x80 0x84 0x88 0x8¢c intx srcldl;
intx dst[4];
srcl1] 0x90 0x94 0x98 Ox9c for (i = @; i < 4; i++) {
src[i] = malloc(sizeof (int) * 4);
src[2] 0xa0 Oxad 0xa8 Oxac dst[i] = malloc(sizeof(int) * 4);
)
src[3] Oxb0 Oxb4 Oxb8 Oxbc for (j = 0; j < 4; j++) {

for (i1 =0; 1 < 4; i++) {

dstl[il[j]1 = srclilljl;
e
}

+ 0xb4 * 0xa4 € 0x94 * 0x84 € Oxb0 *+ Oxad *+ O0x90 * 0x80

src[2][1] src[0][1] src[2]1[0] src[01[0] return 0;
src[3][1] src[1]L1] src[3][0] src[1]L0] }

The Antagonist

* One program reads words sequentially in = oxsoe Miss oxgse Miss
memory (good spatial locality)

= The other reads each word as far apart as . _
possible! (worst spatial locality) 0x88 Hit ©ox280 Miss

* Let’s look at making the matrices much ox8c Hit |0x380 Miss
larger! Let’s make each row span 256 Bytes.
(4 blocks, which is the size of our cache!)

0x84 Hit 0x180 Miss

Ox90 Hit ox84 Miss

0x94 Hit ox184 Miss

.llll llll| RAM .
0x98 Hit 0x284 Miss

Th|s Cache @ @ @ @ oo ox9¢ Hit 0x384 MiSS

item holds : v 5 oxa@ Hit ox88 Miss
0x000, 0x100,

0x200, etc »OOOQ\ 0xa4 Hit ©@x188 Miss

CPU Cache Cache size: 256B oxa8 Hi)
1t 0x288 Mi1ss
(256 Bytes) 64 bytes per block.

Cache Performance

* Recall that caches make computers practical.
= Why? Well...

= Our “slow” program effectively did not use cache, and it was 10 times slower.

* Simply: Caches offer much faster accesses than DRAM.
= Perhaps 100s of times faster.

* Consider the math:
= miss rate (MR): Fraction of memory accesses not in cache.
= hit rate (HR): Fraction of memory accesses found in cache.(HR = 1 — MR)
= hit time (HT): Time it takes to read a block from cache to CPU. (Best case)
= miss penalty (MP): Time it takes to read from main memory to cache.

Cache Performance

« Recall that caches make computers practical.

* Consider the math:
= miss rate (MR): Fraction of memory accesses not in cache.
= hit rate (HR): Fraction of memory accesses found in cache.(HR =1 — MR)
= hit time (HT): Time it takes to read a block from cache to CPU. (Best case)
= miss penalty (MP): Time it takes to read from main memory to cache.

» Average Memory Access Time (AMAT): The time it takes, on average,
to perform a memory request, considering the cache performance.
= AMAT = HT + MR x MP

* Assuming a HT of 1 clock cycle and a MP of 100 clock cycles...
= AHR of 97%: AMAT =14 0.03 X 100 = 4 cycles
* AHR of 99%: AMAT =1+ 0.01 X 100 = 2 cycles
= A hit-rate jump from just 97% to 99% doubles memory performance. Wow.

Cache Layout Summary
* We have seen two types of cache layouts.
= A freeform cache: blocks go wherever. "\ (V) /- O O O O O
» Also called a fully associative cache. W (fﬁfyuasgiicai‘i@
= A direct-mapped cache: blocks go into slots.

o 1 2 3 4
* They have their own trade-offs, and as O O O O O

usual... , W CPU Cache
= We can have a hybrid approach! (direct-mapped)

© 1 2 3 4
* Here, each cache slot has multiple bins.
= You only need to evict when you fill up the bins. O O O O O
Best of both worlds! O O O O O

_ . .y e .
Which do you evict? (Hmm... difficult choice.) PU Cache
ﬁi (2-way associative)

Associativity

« With an associative cache, the address
determines the slot.
= Much like a direct-mapped cache.
= However, the slot has a number of bins.
= Any bin in the slot is viable for a block.

= The number of bins is the number of “ways”
« A direct-mapped cache is a 1-way cache.

O0-
OOk
00+
O0-

CPU Cache

(2-way associative)

S

* When the cache determines if the block is in
the cache already...
= |t determines the slot.

= |t scans every bin for a block tagged with that
exact address.

= Therefore, the cache performance degrades as you
increase the number of ways.

OO0~
0000
O000-

0000
L0000- “00-

O

PU Cache

(4-way associative)

* The notion of storing data is a complicated one.
= Different technologies have different strengths (and costs)

= Often trade-off between:
» fast / small, expensive
 slow / big, cheap

= Hardware designs attempt to accommodate a variety of technologies.
« Often using fast/small memories to act as a “cache” for slower ones.

» Caches can be arranged in several ways:
= Blocks go anywhere (fully-associative)

= Blocks go in particular slots (direct-mapped / 1-way associative)
= Hybrid: Blocks go to particular slots... but then can go in any bin in that slot.

» Caches attempt to exploit temporal and spatial locality of programs.

= And even a slight improvement to hit rate can dramatically improve overall
performance of a program!

