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Threads
Strings? Threads?? What are we building… a loom???
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Our story so far…

Spring 2019/2020

• We looked at how processes reproduce with
▪ This gave us some type of concurrency.

▪ It is process-level, so the OS is scheduling each task.

• We saw some issues with concurrent programming.
▪ Race conditions mean we have to much more carefully 

consider our code.

• This time…
▪ We will look at other forms of concurrency.

▪ Some new methods of coordinating the different sub-
programs.

▪ And some new… dreaded… types of concurrency bugs.
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Threads

Spring 2019/2020

• Process-level concurrency with is 
powerful, but inflexible.
▪ The OS schedules the task, incurring context 

switching overhead.

▪ The process memory is copied making it hard 
to share data among tasks.

• A thread is a concurrency primitive that is 
inner-process.
▪ The program itself schedules the task as part 

of the same process.

▪ Process memory, therefore, is shared across all 
threads.
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Recall our friend Dolly…

CS/COE 0449 – Spring 2019/2020

• The system call in action:
▪ Copies the memory layout.

▪ Copies the process state. (but gives it a unique ID)
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Dolly learned a new trick!

CS/COE 0449 – Spring 2019/2020

• However, with threads… we retain much of the address space.
▪ Threads share code/data/etc, however they have their own stack and CPU state.

▪ They execute in parallel with one another interacting directly with the same data.

CPU State A:
Registers

, 

.text

.data

.bss

PID: 4356

Process

CPU State B:
Registers

, 

stack

CPU State B:
Registers

, 

stack

Page Table A

stack

A



7
Spring 2019/2020

• The 2011 amendment to the C standard (C11) added a threading API.
▪ However, we will still be looking at an older, more prevalent standard.

• We will be reviewing the standard.
▪ The C11 API is still very similar.

▪ There are ports of the interface to many OSes.

▪ Lots of threading APIs in other language emulate it.

• Still very useful to learn!
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POSIX

Spring 2019/2020

• The “p” in pthread stands for the Portable 
Operating System Interface (POSIX).
▪ This is a standard for creating OS abstractions.

▪ Intended to lower the burden of porting applications.
• Most OSes conform to most POSIX standards.

• However, very few OSes fully implement POSIX.

• POSIX standardizes threads, but also process 
creation and the behavior of fork, file 
abstractions, and how data is shared among 
processes.
▪ Many OS interfaces are POSIX interfaces and remain 

(mostly) true across different platforms.
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Creating… hmm… no… weaving a thread

Spring 2019/2020

• Here is a basic threaded program.
▪ is within the main thread.

• The function 
creates a second thread, which 
runs alongside the main thread.
▪ The first argument is the address of 

a variable to hold the thread ID.

▪ The NULL is where you can add 
some flags, but the defaults are OK.

▪ The thread is the function to use.

▪ The last argument is passed to that 
function and generally an address.

C ( )

This function runs in a thread

The thread function

Holds the thread ID.

Function
argument
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The race to the finish.

Spring 2019/2020

• However, when the process exits 
normally, all threads are also 
canceled, even if they haven’t 
completed.

• In this run, the second thread 
never prints its message.

C ( )

This never happens!

In the end of the program, threads are also all exited, potentially prematurely.
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Being considerate

Spring 2019/2020

• waits for the 
given thread to exit by thread ID.
▪ The NULL is, again, optional flags.

• Here, the main thread waits until 
the thread function completes.
▪ It prints out the string given by the 

argument.

C ( )

The “str” argument.

Waits…

Guaranteed to happen only after completes.
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Sharing is caring

Spring 2019/2020

• Unlike process-level concurrency 
using , threads share 
memory.

• Each thread, here, shares access to 
the same global variable .
▪ When the main thread updates, the 

secondary thread sees that value.

• Threads share the same virtual 
address space (and page table.)
▪ They only have their own stack and 

CPU state.

C ( )

Thread function increments

Main thread increments, too!
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A problem returns with a vengeance

Spring 2019/2020

C ( )

Thread function might get
interrupted before the print

Then main thread increments! :(

Race Condition
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What happened???

Spring 2019/2020

• Since the threads share memory, 
access to a variable, such as this, 
may require extra care.

• When the main thread gets 
interrupted just as it was printing 
the value, the thread is scheduled.
▪ The thread prints the value instead.

▪ Then the main thread, when it 
continues, prints it again!

• If only we had a way to… align 
them in time… what’s the word…

C ( )

Thread function increments

Main thread increments, too!
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Synchronization
Stop! Hammer time!
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A story about the railroad

Spring 2019/2020

• Systems scientists have long been inspired 
by the real-world for insight on design.

• The rail system requires a lot of attention to 
detail to provide:
▪ Orderly and timely scheduling of trains.

▪ Shared use of a single resource: rail.

▪ Coördination with trains and competing interests.

• In order to provide this, trains make use of 
signals and switching areas.
▪ Trains wait while others pass, all agreeing on the 

nature of signals.

▪ The signals are called semaphores.
Photo by David Ingham
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The seminal semaphore

Spring 2019/2020

• A semaphore is a special counter used for synchronization.
▪ Invented by Dutch systems scientist Edsger Dijkstra in the early 1960s.

• The counter is a signed integer that often starts at zero or one.

• Two defined operations:
▪ Up (signal/release); increments counter.

▪ Down (wait/acquire); decrements counter but waits if the counter is 0.

• These operations often have different names or are abbreviated:
▪ V (Based on Dutch vrijgave “to release”)

▪ P (Based on Dutch passering “to pass”, based around railroad terminology)
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Semaphores to prevent the derailing

Spring 2019/2020

• creates a new semaphore.
▪ The first argument is an address to a 

variable that will hold the semaphore data.

▪ The second argument, when 0, means that 
other threads can see the semaphore. 
Non-zero means other threads cannot 
interact with the semaphore, which is a bit 
more advanced.

▪ The third argument is the initial value.
• Here it is 1.

• decrements the counter.
▪ Waits to decrement if the counter is 0.

• increments the counter.
▪ May release a thread waiting at

C ( )

Critical Section
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Semaphores to prevent the derailing

Spring 2019/2020

C ( )

Critical Section

• When both threads hit at 
the same time, only one continues.

• When one sets the lock; other waits.
▪ The other thread relies on the first to 

eventually release the lock using

▪ When this happens, the other thread can go.

• The lock/unlock pattern creates a 
critical section, a piece of code that has 
the guarantee that only one task can 
enter at a time.
▪ Here, the counter is guaranteed to update at 

the same time as it is printed.



20

Semaphores to prevent the derailing

Spring 2019/2020

C ( )

Critical Section
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Mutex… ew… don’t like the sound of that

Spring 2019/2020

• As you can see, there is a common case.
▪ Simple critical sections just need a counter that covers 0 and 1.

• A mutex is a special Boolean used for synchronization.
▪ It is short for “mutual exclusion,” a term for when two things can only have one 

resource at a time.

• There are two defined operations:
▪ lock / wait; only proceeds if the mutex is unlocked.

▪ unlock / release; unlocks the mutex.

• A mutex can be created using a semaphore.
▪ It provides a subset of the capabilities of the more general semaphore.
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A mutex to prevent the derailing

Spring 2019/2020

• Mutexes are useful for locking 
single resources.
▪ It follows much the same pattern as 

semaphores, and perhaps easier to 
understand.

• creates the 
mutex similarly to .

• and 
do the 

locking and unlocking, as 
expected.

C ( )

Critical Section
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A mutex to prevent the derailing

Spring 2019/2020

C ( )

Critical Section
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Strategies

Spring 2019/2020

• Semaphores and mutexes are both primitives to aid in concurrent 
programming.

• We saw, here, another example of a race condition, a concurrency 
bug where the absence of guaranteed order can result in incorrect 
behavior.
▪ Namely, threads being interrupted in-between operations that need to happen 

together and racing another thread that will incorrectly use that intermediate 
value.

• However, that’s not the only type of concurrency bug we can have!
▪ Yay! 
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Parallel Pitfalls
This is like that time when a bird pooped on me the same time I stepped in a 

very muddy puddle.
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Everybody loves resources

Spring 2019/2020

Resource contention:

• Printer needs paper…

• You need to buy some 
paper…

• You need to print an order 
form for paper…

• Printer needs paper…
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Typically…

Spring 2019/2020

• Metaphor: intersection.

• The intersection is a shared 
resource, much like a device or 
the CPU.

• Multiplexing the intersection is 
important to avoid crashes.

• When the streets aren’t busy, 
cars just make it safely across.

It is fine when two
tasks can share a
resource without
conflict… they do
not need to
coördinate.
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Deadlock: The traffic jam (it’s not very delicious)

Spring 2019/2020

• However, in some 
circumstances, several cars 
may reach the intersection at 
the same time.

• If there is no previously 
defined way to handle this, 
they all wait for the others to 
get out of the way.
▪ Forever.

• Deadlock occurs when multiple 
tasks are waiting for each 
other, making no progress.

Not fine if tasks
need a common
resource at the
same time without
an agreed way to
proceed.



29

Synchronization solves deadlock

Spring 2019/2020

• Deadlock is a bug that needs 
extra consideration to avoid.

• In this case, you need some 
method of making only some 
of the cars (tasks) wait, while 
letting others go.
▪ Traffic light, perhaps

• Beyond defining order, 
synchronization helps avoid 
these types of logical errors.

With synchronization,
tasks can agree which
get to go next, and
which have to wait.
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Starved for attention…

Spring 2019/2020

• Another issue, related to 
deadlock, is starvation where 
the system makes progress but 
one task is perpetually delayed.

• When some tasks have priority 
over resources, they may not 
give them up for other tasks.
▪ Those tasks wait forever.

• Without a traffic light, you rely 
on people being nice. :(

When nobody yields
to a particular task
and gives up a shared
resource, that task
cannot proceed!
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Starvation: a matter of fairness

Spring 2019/2020

• This can happen in situations where “fairness” scheduling goes awry.

• If you have a webserver, the OS might schedule that process whenever 
there is some incoming requests.
▪ What if you are getting a lot of traffic!

▪ The OS might always schedule the webserver.

▪ Important background tasks might not run!

• Preventing starvation might be keeping track of how much time a 
process has a resource and how long it has waited in line.
▪ Low-priority tasks start at the back of the line and move up the queue the longer 

they wait… eventually cutting in front of high-priority tasks that start in the front.

• That’s just one idea. Scheduling resources is a very difficult problem!
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Livelock: The hallway problem

Spring 2019/2020

• There is a narrow hallway.

• Let’s say you have two very polite 
people.

• They walk toward each other… and try 
very hard to get out of each other’s way.
▪ They keep insisting the other go ahead of 

them.

• This is livelock, where two tasks are 
actively signaling the other to go and 
making no progress.
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Careful design works around livelock

Spring 2019/2020

• Livelock can be solved using a tie-
breaking scheme.
▪ Just find something comparable and unique 

among the tasks to create an arbitrary 
priority.

• All threads have IDs, so one easy 
strategy is to have the largest ID yield to 
the smaller.
▪ This also helps starvation since livelock is 

starvation to the extreme: where everybody 
is starving.
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Deadlock vs. Livelock

Spring 2019/2020

• In deadlock, all tasks are waiting for a signal that will never happen.
▪ They are inactively achieving nothing. (“ZZZZZZZZ”, “ZZZZZZZZ”)

• In contrast, livelock occurs when each task signals the other, and they 
respond by signaling back. (“No, you.” “No… you!”)
▪ They are actively achieving nothing.

• Detecting that your program has a deadlock or livelock is tricky.
▪ When it does, it may only happen a small percentage of the time.

▪ In your OS course, you will learn more about deadlock detection and resolution.
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Solving things

Spring 2019/2020

• Proper synchronization and planning can solve all these issues.
▪ Deadlock: Avoid patterns of critical sections that depend on each other.

▪ Livelock: Establish a tie-breaking mechanism (thread with smallest ID goes first!)

▪ Yet, it takes a good deal of programming experience to handle them.

• The wide prevalence of multiprocessing and multithreading capable 
computers in the hands of average consumers is changing 
programming.
▪ New (and old) languages are being pushed for their better handling of 

concurrency issues.

▪ Best-practices and frameworks continue to adapt to avoid many of the pitfalls 
we have discussed today.

▪ Pay attention in your compilers and OS course to hone your own skill!
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basic API summary

Spring 2019/2020

• Thread creation
▪

• Join threads (wait until complete)
▪ Waits for the given thread to end.

• Getting thread ID
▪ Returns the thread ID of the current thread.

• Thread destruction (explicit)
▪ Attempts to preemptively exit the given thread.
▪ Ends current thread and returns the provided value.
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synchronization API summary

Spring 2019/2020

• Semaphores
▪

▪

Creates a semaphore with the given initial value. (The second argument means it the semaphore 
data is in shared memory. If non-zero, it can’t be seen by other threads.)

▪ Decrements counter unless it is 0 in which case it waits.

▪ Increments counter.

• Mutexes
▪

▪ Creates a mutex (unlocked).

▪ Waits until it can lock the mutex.

▪ Unlocks the mutex.
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Summary

Spring 2019/2020

• Threads are a different way to provide concurrency in a program.
▪ Unlike process-level concurrency, threads share memory within the process.

• Synchronization primitives such as semaphores allow for creation of 
critical sections; necessary for correct concurrent code.

• Incorrect code may result in a new set of logical errors.
▪ Race conditions – When execution order stochastically results in wrong behavior.

▪ Deadlock – When resources are contended so much the program freezes.

▪ Starvation – When a resource is greedily kept by a task, certain tasks freeze.

▪ Livelock – Starvation happens at every task… they all actively yield to each other.


