TH READS AN D Introduction to

Systems Software

SYNCHRONIZATION

wilkie

THREADS

Strings? Threads?? What are we building... a loom?7?

Our story so far...

* We looked at how processes reproduce with fo
= This gave us some type of concurrency.
= |t is process-level, so the OS is scheduling each task.

* We saw some issues with concurrent programming.

= Race conditions mean we have to much more carefully
consider our code.

* This time...
= We will look at other forms of concurrency.

= Some new methods of coordinating the different sub-
programs.

= And some new... dreaded... types of concurrency bugs.

* Process-level concurrency with fork() is
powerful, but inflexible.

= The OS schedules the task, incurring context
switching overhead.

= The process memory is copied making it hard
to share data among tasks.

A thread is a concurrency primitive that is
inner-process.

= The program itself schedules the task as part
of the same process.

= Process memory, therefore, is shared across all
threads.

Recall our friend Dolly...

* The fork() system call in action:
= Copies the memory layout.
= Copies the process state. (but gives it a unique ID)

Parent Child
stack stack
.bss .bss
text fork(text
--------- >
CPU State A: CPU State B:
Registers Registers
%FLAGS, %RIP %FLAGS, %RIP
| PID:4356 | | PID:6567 |

I Page Table A I I Page Table B I

Dolly learned a new trick!

 However, with threads... we retain much of the address space.
= Threads share code/data/etc, however they have their own stack and CPU state.
= They execute in parallel with one another interacting directly with the same data.

Process
| |
.bss
text pthread_create() pthread_create()
| stack | | stack | | stack |
CPU State A: CPU State B: CPU State B:
Registers Registers Registers
%FLAGS, %RIP %FLAGS, %RIP %FLAGS, %RIP

| PID:4356 |

I Page Table A I

libpthread

e The 2011 amendment to the C standard (C11) added a threading API.

= However, we will still be looking at an older, more prevalent standard.

* We will be reviewing the pthread standard.
= The C11 threads.h APIis still very similar.
= There are ports of the pthread.h interface to many OSes.
= | ots of threading APlIs in other language emulate it.

* Still very useful to learn!

POSIX

* The “p” in pthread stands for the Portable
Operating System Interface (POSIX).
= This is a standard for creating OS abstractions.

= Intended to lower the burden of porting applications.
* Most OSes conform to most POSIX standards.
* However, very few OSes fully implement POSIX.

* POSIX standardizes threads, but also process
creation and the behavior of fork, file
abstractions, and how data is shared among
processes.

= Many OS interfaces are POSIX interfaces and remain
(mostly) true across different platforms.

Creating... hmm... no... weaving a thread

C(gcc -o thrd_bad thrd_bad.c -1pthread)

#include <pthread.h>
#include <stdio.h>

void* thread(voidx data) {
printf("Hello, %s!\n", data);

turn NULL; : : i
} rer " This function runs in a thread

void main(void) {
char* str = "wilkie”;

pthread_t tid; Holds the thread ID.

pthread_create(&tid, NULL, thread, (voidx)str);
The thread function ¥ Function

printf("Done!\n"); argument

» Here is a basic threaded program.
=main() is within the main thread.

* The pthread_create function
creates a second thread, which
runs alongside the main thread.

= The first argument is the address of
a variable to hold the thread ID.

= The NULL is where you can add
some flags, but the defaults are OK.

= The thread is the function to use.

= The last argument is passed to that
function and generally an address.

The race to the finish.

> ./thrd_bad
C(gcc -o thrd_bad thrd_bad.c -lpthread) Done!

#include <pthread.h>
#include <stdio.h>

void* thread(void* data) { .
printf("Hello, %s!\n", data): However, when the process exits

turn NULL; .
return ® This never happens! normally, all threads are also

’ canceled, even if they haven't
void main(void) { completed.
char* str = "wilkie”;
pthread_t tid; * In this run, the second thread
pthread_create(&tid, NULL, thread, (voidx)str); never printS |tS message

printf("Done!\n");

}
® In the end of the program, threads are also all exited, potentially prematurely.

Being considerate

> ./thrd
C(gcc -o thrd thrd.c -lpthread) Hello, wilkie!

#include <pthread.h> Done!
#include <stdio.h>

void* thread(void* data) { o .
printf("Hello, %s!\n", (charx)data); * pthread_join() waits for the

, e M ®The “str”argument. given thread to exit by thread ID.
= The NULL is, again, optional flags.

void main(void) {
char* str = "wilkie”;

* Here, the main thread waits until
the thread function completes.

= |t prints out the string given by the
pthread_join(tid, NULL); // wait for thread argument.

pthread_t tid; v
pthread_create(&tid, NULL, thread, (voidx)str);

LYY
printf(”Done!\n"); Waits...

\Guaranteed to happen only after thread() completes.

Sharing is caring

C (gcc -o thrd_share_bad thrd_share_bad.c -lpthread) * Unlike prOceSS'IEVEI concurrency
#include <pthread.h> using fork(), threads share

#include <stdio.h>

memory.
int counter = 0;
void* thread(void* data) {
while(counter < 100) { °
e o L counten: Each thread, here, shares access to
counter++;
< % Thread function increments the same globgl variable counter.
return NULL; = When the main thread updates, the

’ secondary thread sees that value.

void main(void) {
pthread_t tid;
pthread_create(&tid, NULL, thread, NULL);

* Threads share the same virtual
while(counter < 100) {
elcounter < 100) C veen. address space (and page table.)
counter++;

} ' Main thread increments, too! = They only have their own stack and
printf("Done!\n"); CPU State.

A problem returns with a vengeance

(:(gcc -0 thrd_share_bad thrd_share_bad.c —1pthread)

#include <pthread.h>
#include <stdio.h>

int counter = 0;

void* thread(void* data) {
while(counter < 100) {
printf ("THREAD: %d\n", counter);
, coumtert®: ® Thread function might get
return NULL; interrupted before the print

}

void main(void) {
pthread_t tid;
pthread_create(&tid, NULL, thread, NULL);

while(counter < 100) {

printf("MAIN: %d\n", counter);

counter++;“ . .
} Then main thread increments! :
printf(”"Done!\n");

> ./thrd_share_bad

MAIN:
MAIN:
MAIN:
MAIN:

0

1
2
3

THREAD: 4
THREAD: 5
THREAD: 6

MAIN: 4
MAIN: 8
MAIN: 9

MAIN:

10

THREAD: 7
THREAD: 11
THREAD: 12

Race Condition

What happened???

C (gcc -0 thrd_share_bad thrd_share_bad.c —1pthread)

#include <pthread.h>
#include <stdio.h>

int counter = 0;

void* thread(void* data) {
while(counter < 100) {
printf ("THREAD: %d\n", counter);
counter++; . .
) ® Thread function increments
return NULL;

}

void main(void) {
pthread_t tid;
pthread_create(&tid, NULL, thread, NULL);

while(counter < 100) {

printf("MAIN: %d\n", counter);

counter++;‘g . .
} Main thread increments, too!
printf(”"Done!\n");

* Since the threads share memory,
access to a variable, such as this,
may require extra care.

* When the main thread gets
interrupted just as it was printing
the value, the thread is scheduled.

= The thread prints the value instead.

= Then the main thread, when it
continues, prints it again!

* If only we had a way to... align
them in time... what'’s the word...

T

SYNCHRONIZATION

Stop! Hammer time!

B

A story about the railroad

» Systems scientists have long been inspired
by the real-world for insight on design. v

* The rail system requires a lot of attention to
detail to provide:
= Orderly and timely scheduling of trains.
= Shared use of a single resource: rail.
= Codrdination with trains and competing interests.

* In order to provide this, trains make use of
signals and switching areas.

= Trains wait while others pass, all agreeing on the
nature of signals.

= The signals are called semaphores.

The seminal semaphore

« A semaphore is a special counter used for synchronization.
= |nvented by Dutch systems scientist Edsger Dijkstra in the early 1960s.

* The counter is a sighed integer that often starts at zero or one.

* Two defined operations:
= Up (signal/release); increments counter.
= Down (wait/acquire); decrements counter but waits if the counter is O.

* These operations often have different names or are abbreviated:
=V (Based on Dutch vrijgave “to release”)
= P (Based on Dutch passering “to pass”, based around railroad terminology)

Semaphores to prevent the derailing

* sem_init() creates a new semaphore.

C(gcc -0 thrd_share thrd_share.c —1pthread) . .
= The first argument is an address to a

#include <pthread.h>

#include <semaphore.h> variable that will hold the semaphore data.
sen_t 1ock; = The second argument, when O, means that
i counter =8 other threads can see the semaphore.
ot < 100> ¢ Non-zero means other threads cannot
TR i vountery: interact with the semaphore, which is a bit
} Csc:rjnn_tpec::(;&lock); /7 we N Critical Section more a.dva nced. . o
Feturn NULL; = The third argument is the initial value.

: Hereitis 1.

void main(void) {
sem_init(&lock, @, 1); // create a counter starting at 1

pthread_t tid;

pthread_create(&tid, NULL, thread, NULL); ® Sem_wait () decrements the Counter.
o it locky; 17 down = Waits to decrement if the counter is O.
printf("MAIN: %d\n”, counter); .
o et alock); 1/ up * sem_post() increments the counter.
orint(Done!\n; = May release a thread waiting at sem_wait

Semaphores to prevent the derailing

C(gcc -0 thrd_share thrd_share.c —1pthread)

#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>

sem_t lock;
int counter = 0;

voidx thread(voidx data) {
while(counter < 100) {
P sem_wait(&lock); // down
printf("THREAD: %d\n”, counter);
counter++;

| sempost(sloc: // Y Critical Section

return NULL;
3

void main(void) {
sem_init(&lock, @, 1); // create a counter starting at 1

pthread_t tid;
pthread_create(&tid, NULL, thread, NULL);

while(counter < 100) {
¥ sem_wait(&lock); // down
printf("MAIN: %d\n", counter);
counter++;
sem_post(&lock); // up
}
printf("Done!\n");
3

* When both threads hit sem_wait() at
the same time, only one continues.

* When one sets the lock; other waits.

= The other thread relies on the first to
eventually release the lock using sem_post ()

= When this happens, the other thread can go.

* The lock/unlock pattern creates a

critical section, a piece of code that has
the guarantee that only one task can

enter at a time.

= Here, the counter is guaranteed to update at

the same time as it is printed.

Semaphores to prevent the derailing

> . /thrd_share

C (gcc -0 thrd_share thrd_share.c -lpthread) MAIN: 0
#include <pthread.h> .
#include <semaphore.h> MAIN . 1
#include <stdio.h> MAIN 2
sem_t lock;
int counter = 0; MAIN: 3
void* thread(void* data) { THREAD:
while(counter < 100) {
sem_wait(&lock); // down THREAD:
printf("THREAD: %d\n", counter);
counter++; ..) THREAD :
sen post(zlocko; // w "~ Critical Section
) MAIN:
return NULL;
) MAIN:
void main(void) { 5
sem_init(&lock, @, 1); // create a counter starting at 1 MAIN
pthread_t tid; MAIN 1 @
pthread_create(&tid, NULL, thread, NULL);
THREAD: 11
while(counter < 100) {
sem_wait(&lock); // down THREAD: 12
printf("MAIN: %d\n", counter);
counter-++; THREAD: 13
sem_post(&lock); // up

}
printf("Done!\n");

Mutex... ew... don’t like the sound of that

« As you can see, there is a common case.
= Simple critical sections just need a counter that covers O and 1.

* A mutex is a special Boolean used for synchronization.

= |t is short for “mutual exclusion,” a term for when two things can only have one
resource at a time.

* There are two defined operations:
= lock / wait; only proceeds if the mutex is unlocked.
= unlock / release; unlocks the mutex.

« A mutex can be created using a semaphore.
= |t provides a subset of the capabilities of the more general semaphore.

A mutex to prevent the derailing

C (gcc -0 thrd_share_mutex thrd_share_mutex.c —1pthread) ® Mutexes are USEfUI for IOCking
D single resources.
pthread nutex_t Tock; = |t follows much the same pattern as

semaphores, and perhaps easier to
voidx thread(voidx data) {
while(counter < 100) { UnderStand.

pthread_mutex_lock(&lock);
printf("THREAD: %d\n”, counter);
counter++;

' \ C o 0 o
pthread_mutex_unlock(&lock); r|t|ca| Sectlon . .
) o L * pthread_mutex_init() creates the

mutex similarly to sem_init().

3

void main(void) {
pthread_mutex_init(&lock, NULL);

pthread_t tid;
pthread_create(&tid, NULL, thread, NULL);

* pthread_mutex_lock() and

while(counter < 100) {

E:T;i??:Ex;zx_;giﬁs&lzgﬁi;er) pth read_mutex_un10Ck<) do the
;(’x:::g;;tex_unlock(&lock); IOCkIng and unIOCkIng’ as
intfCoone iy, expected.

3

A mutex to prevent the derailing

> ./thrd_share_mutex
C (gcc -0 thrd_share_mutex thrd_share_mutex.c —1pthread) MAIN: 0

#include <pthread.h> o
#include <stdio.h> MAIN 5

pthread_mutex_t lock; MAIN:

1
2
MAIN: 3
4

int counter = 0;

voidx thread(voidx data) {

while(counter < 100) { MAIN:
pthread_mutex_lock(&lock);
printf("THREAD: %d\n"”, counter); THREAD:
counter++; o. o °
pthread_mutex_unlock(&lock); \ Cr|tlca| Sectlon THREAD :
}
return NULL; THREAD:
3
void main(void) { THREAD
pthread_mutex_init(&lock, NULL); THREAD .
pthread_t tid;
pthread_create(&tid, NULL, thread, NULL); MAIN 1®
while(counter < 100) { MAIN: 11
pthread_mutex_lock(&lock);
printf("MAIN: %d\n", counter); THREAD: 12
counter++;
pthread_mutex_unlock(&lock); THREAD: 13
}

printf("Done!\n");

Strategies

* Semaphores and mutexes are both primitives to aid in concurrent
programming.

* We saw, here, another example of a race condition, a concurrency
bug where the absence of guaranteed order can result in incorrect
behavior.

= Namely, threads being interrupted in-between operations that need to happen
together and racing another thread that will incorrectly use that intermediate
value.

« However, that’s not the only type of concurrency bug we can have!
=Yay! ®

PARALLEL PITFALLS

This is like that time when a bird pooped on me the same time | stepped in a
very muddy puddle.

Everybody loves resources

Resource contention:

* Printer needs paper...

* You need to buy some
paper...

* You need to print an order
form for paper...

* Printer needs paper...

Typically...

« Metaphor: intersection.

* The intersection is a shared

resource, much like a device or
the CPU.

X 1 g Multiplexing the intersection is
It is fine when two . id h
tasks can share a Important to avoid crashes.

resource without

conflict... they do
not need to * When the streets aren’t busy,

coordinate. cars just make it safely across.

Deadlock: The traffic jam (it's not very delicious)

. <IIIIIIIIIIIII

® X Not fine if tasks

A

need a common
resource at the
same time without
an agreed way to
proceed.

« However, in some
circumstances, several cars
may reach the intersection at
the same time.

* If there is no previously
defined way to handle this,
they all wait for the others to
get out of the way.

= Forever.

« Deadlock occurs when multiple
tasks are waiting for each
other, making no progress.

Synchronization solves deadlock

" With synchronization,
tasks can agree which
get to go next, and
which have to wait.

* Deadlock is a bug that needs
extra consideration to avoid.

* |In this case, you need some
method of making only some
of the cars (tasks) wait, while
letting others go.

= Traffic light, perhaps

* Beyond defining order,
synchronization helps avoid
these types of logical errors.

Starved for attention...

® * Another issue, related to
deadlock, is starvation where
the system makes progress but
one task is perpetually delayed.

. <IIIIIIIIIIIII

177777

PR @ @ S S R ° When some taSkS have priority
..... O SO N0 N0 T EYS over resources, they may not
" When nobody yields gjye them up for other tasks.

to a particular task = Those tasks wait forever.
and gives up a shared

resource, that task
cannot proceed! * Without a traffic light, you rely
on people being nice. :(

Starvation: a matter of fairness

 This can happen in situations where “fairness” scheduling goes awry.

* If you have a webserver, the OS might schedule that process whenever
there is some incoming requests.
= What if you are getting a lot of traffic!
= The OS might always schedule the webserver.
= |[mportant background tasks might not run!

* Preventing starvation might be keeping track of how much time a
process has a resource and how long it has waited in line.

= | ow-priority tasks start at the back of the line and move up the queue the longer
they wait... eventually cutting in front of high-priority tasks that start in the front.

« That's just oneidea. Scheduling resources is a very difficult problem!

Livelock: The hallway problem

* There is a narrow hallway.

* Let’s say you have two very polite
people.

* They walk toward each other... and try
very hard to get out of each other’s way.

= They keep insisting the other go ahead of
them.

* This is livelock, where two tasks are
actively signaling the other to go and
making no progress.

Careful design works around livelock

* Livelock can be solved using a tie-
breaking scheme.

47 4 = Just find something comparable and unique
: among the tasks to create an arbitrary
priority.

 All threads have IDs, so one easy
strategy is to have the largest ID yield to
the smaller.

= This also helps starvation since livelock is
» starvation to the extreme: where everybody
is starving.

Deadlock vs. Livelock

* In deadlock, all tasks are waiting for a signal that will never happen.
= They are inactively achieving nothing. (“ZZzzzzz2", “77777277")

* In contrast, livelock occurs when each task signals the other, and they
respond by signaling back. (“No, you.” “No... you!”)
= They are actively achieving nothing.

* Detecting that your program has a deadlock or livelock is tricky.
= When it does, it may only happen a small percentage of the time.
= |n your OS course, you will learn more about deadlock detection and resolution.

Solving things

* Proper synchronization and planning can solve all these issues.
= Deadlock: Avoid patterns of critical sections that depend on each other.
= Livelock: Establish a tie-breaking mechanism (thread with smallest ID goes first!)
= Yet, it takes a good deal of programming experience to handle them.

* The wide prevalence of multiprocessing and multithreading capable
computers in the hands of average consumers is changing
programming.

= New (and old) languages are being pushed for their better handling of
concurrency Issues.

= Best-practices and frameworks continue to adapt to avoid many of the pitfalls
we have discussed today.

= Pay attention in your compilers and OS course to hone your own skill!

pthread basic APl summary

#include <pthread.h>

* Thread creation
= int pthread_create(pthread_t*, pthread_attr_t*, voidx(*)(void*), voidx*);

» Join threads (wait until complete)
= pthread_join(pthread_t, voidxx); Waits for the given thread to end.

» Getting thread ID
= pthread_t pthread_self(); Returns the thread ID of the current thread.

» Thread destruction (explicit)
= pthread_cancel (pthread_t); Attempts to preemptively exit the given thread.
= pthread_exit(voidx); Ends current thread and returns the provided value.

pthread synchronization APl summary

* Semaphores
= #include <semaphore.h>

=" int sem_init(sem_t*, @, unsigned int initial_value);

Creates a semaphore with the given initial value. (The second argument means it the semaphore
data is in shared memory. If non-zero, it can’t be seen by other threads.)

= int sem_wait(sem_tx*); Decrements counter unless it is O in which case it waits.
" int sem_post(sem_t*x); Increments counter.

* Mutexes
" #include <pthread.h>
= int pthread_mutex_init(pthread_mutex_t, NULL); Creates a mutex (unlocked).
= int pthread_mutex_lock(pthread_mutex_tx); VWaits until it can lock the mutex.
= int pthread_mutex_unlock(pthread_mutex_t*); Unlocks the mutex.

* Threads are a different way to provide concurrency in a program.
= Unlike process-level concurrency, threads share memory within the process.

* Synchronization primitives such as semaphores allow for creation of
critical sections; necessary for correct concurrent code.

* Incorrect code may result in a new set of logical errors.
= Race conditions - When execution order stochastically results in wrong behavior.
= Deadlock - When resources are contended so much the program freezes.
= Starvation - When a resource is greedily kept by a task, certain tasks freeze.
= Livelock - Starvation happens at every task... they all actively yield to each other.

