
Threads and

Spring 2019/2020

wilkie

Introduction to
Systems Software

Synchronization

15

Spring 2019/2020

Threads
Strings? Threads?? What are we building… a loom???

2

3

Our story so far…

Spring 2019/2020

• We looked at how processes reproduce with
▪ This gave us some type of concurrency.

▪ It is process-level, so the OS is scheduling each task.

• We saw some issues with concurrent programming.
▪ Race conditions mean we have to much more carefully

consider our code.

• This time…
▪ We will look at other forms of concurrency.

▪ Some new methods of coordinating the different sub-
programs.

▪ And some new… dreaded… types of concurrency bugs.

4

Threads

Spring 2019/2020

• Process-level concurrency with is
powerful, but inflexible.
▪ The OS schedules the task, incurring context

switching overhead.

▪ The process memory is copied making it hard
to share data among tasks.

• A thread is a concurrency primitive that is
inner-process.
▪ The program itself schedules the task as part

of the same process.

▪ Process memory, therefore, is shared across all
threads.

5

Recall our friend Dolly…

CS/COE 0449 – Spring 2019/2020

• The system call in action:
▪ Copies the memory layout.

▪ Copies the process state. (but gives it a unique ID)

CPU State A:
Registers

,

.text

.data

.bss

CPU State B:
Registers

,

.text

.data

.bss

stack

PID: 4356 PID: 6567

Parent Child

A B

Page Table A Page Table B

stack

CPU State A:
Registers

,

.text

.data

.bss

stack

6

Dolly learned a new trick!

CS/COE 0449 – Spring 2019/2020

• However, with threads… we retain much of the address space.
▪ Threads share code/data/etc, however they have their own stack and CPU state.

▪ They execute in parallel with one another interacting directly with the same data.

CPU State A:
Registers

,

.text

.data

.bss

PID: 4356

Process

CPU State B:
Registers

,

stack

CPU State B:
Registers

,

stack

Page Table A

stack

A

7
Spring 2019/2020

• The 2011 amendment to the C standard (C11) added a threading API.
▪ However, we will still be looking at an older, more prevalent standard.

• We will be reviewing the standard.
▪ The C11 API is still very similar.

▪ There are ports of the interface to many OSes.

▪ Lots of threading APIs in other language emulate it.

• Still very useful to learn!

8

POSIX

Spring 2019/2020

• The “p” in pthread stands for the Portable
Operating System Interface (POSIX).
▪ This is a standard for creating OS abstractions.

▪ Intended to lower the burden of porting applications.
• Most OSes conform to most POSIX standards.

• However, very few OSes fully implement POSIX.

• POSIX standardizes threads, but also process
creation and the behavior of fork, file
abstractions, and how data is shared among
processes.
▪ Many OS interfaces are POSIX interfaces and remain

(mostly) true across different platforms.

9

Creating… hmm… no… weaving a thread

Spring 2019/2020

• Here is a basic threaded program.
▪ is within the main thread.

• The function
creates a second thread, which
runs alongside the main thread.
▪ The first argument is the address of

a variable to hold the thread ID.

▪ The NULL is where you can add
some flags, but the defaults are OK.

▪ The thread is the function to use.

▪ The last argument is passed to that
function and generally an address.

C ()

This function runs in a thread

The thread function

Holds the thread ID.

Function
argument

10

The race to the finish.

Spring 2019/2020

• However, when the process exits
normally, all threads are also
canceled, even if they haven’t
completed.

• In this run, the second thread
never prints its message.

C ()

This never happens!

In the end of the program, threads are also all exited, potentially prematurely.

11

Being considerate

Spring 2019/2020

• waits for the
given thread to exit by thread ID.
▪ The NULL is, again, optional flags.

• Here, the main thread waits until
the thread function completes.
▪ It prints out the string given by the

argument.

C ()

The “str” argument.

Waits…

Guaranteed to happen only after completes.

12

Sharing is caring

Spring 2019/2020

• Unlike process-level concurrency
using , threads share
memory.

• Each thread, here, shares access to
the same global variable .
▪ When the main thread updates, the

secondary thread sees that value.

• Threads share the same virtual
address space (and page table.)
▪ They only have their own stack and

CPU state.

C ()

Thread function increments

Main thread increments, too!

13

A problem returns with a vengeance

Spring 2019/2020

C ()

Thread function might get
interrupted before the print

Then main thread increments! :(

Race Condition

14

What happened???

Spring 2019/2020

• Since the threads share memory,
access to a variable, such as this,
may require extra care.

• When the main thread gets
interrupted just as it was printing
the value, the thread is scheduled.
▪ The thread prints the value instead.

▪ Then the main thread, when it
continues, prints it again!

• If only we had a way to… align
them in time… what’s the word…

C ()

Thread function increments

Main thread increments, too!

Spring 2019/2020

Synchronization
Stop! Hammer time!

15

16

A story about the railroad

Spring 2019/2020

• Systems scientists have long been inspired
by the real-world for insight on design.

• The rail system requires a lot of attention to
detail to provide:
▪ Orderly and timely scheduling of trains.

▪ Shared use of a single resource: rail.

▪ Coördination with trains and competing interests.

• In order to provide this, trains make use of
signals and switching areas.
▪ Trains wait while others pass, all agreeing on the

nature of signals.

▪ The signals are called semaphores.
Photo by David Ingham

17

The seminal semaphore

Spring 2019/2020

• A semaphore is a special counter used for synchronization.
▪ Invented by Dutch systems scientist Edsger Dijkstra in the early 1960s.

• The counter is a signed integer that often starts at zero or one.

• Two defined operations:
▪ Up (signal/release); increments counter.

▪ Down (wait/acquire); decrements counter but waits if the counter is 0.

• These operations often have different names or are abbreviated:
▪ V (Based on Dutch vrijgave “to release”)

▪ P (Based on Dutch passering “to pass”, based around railroad terminology)

18

Semaphores to prevent the derailing

Spring 2019/2020

• creates a new semaphore.
▪ The first argument is an address to a

variable that will hold the semaphore data.

▪ The second argument, when 0, means that
other threads can see the semaphore.
Non-zero means other threads cannot
interact with the semaphore, which is a bit
more advanced.

▪ The third argument is the initial value.
• Here it is 1.

• decrements the counter.
▪ Waits to decrement if the counter is 0.

• increments the counter.
▪ May release a thread waiting at

C ()

Critical Section

19

Semaphores to prevent the derailing

Spring 2019/2020

C ()

Critical Section

• When both threads hit at
the same time, only one continues.

• When one sets the lock; other waits.
▪ The other thread relies on the first to

eventually release the lock using

▪ When this happens, the other thread can go.

• The lock/unlock pattern creates a
critical section, a piece of code that has
the guarantee that only one task can
enter at a time.
▪ Here, the counter is guaranteed to update at

the same time as it is printed.

20

Semaphores to prevent the derailing

Spring 2019/2020

C ()

Critical Section

21

Mutex… ew… don’t like the sound of that

Spring 2019/2020

• As you can see, there is a common case.
▪ Simple critical sections just need a counter that covers 0 and 1.

• A mutex is a special Boolean used for synchronization.
▪ It is short for “mutual exclusion,” a term for when two things can only have one

resource at a time.

• There are two defined operations:
▪ lock / wait; only proceeds if the mutex is unlocked.

▪ unlock / release; unlocks the mutex.

• A mutex can be created using a semaphore.
▪ It provides a subset of the capabilities of the more general semaphore.

22

A mutex to prevent the derailing

Spring 2019/2020

• Mutexes are useful for locking
single resources.
▪ It follows much the same pattern as

semaphores, and perhaps easier to
understand.

• creates the
mutex similarly to .

• and
do the

locking and unlocking, as
expected.

C ()

Critical Section

23

A mutex to prevent the derailing

Spring 2019/2020

C ()

Critical Section

24

Strategies

Spring 2019/2020

• Semaphores and mutexes are both primitives to aid in concurrent
programming.

• We saw, here, another example of a race condition, a concurrency
bug where the absence of guaranteed order can result in incorrect
behavior.
▪ Namely, threads being interrupted in-between operations that need to happen

together and racing another thread that will incorrectly use that intermediate
value.

• However, that’s not the only type of concurrency bug we can have!
▪ Yay!

Spring 2019/2020

Parallel Pitfalls
This is like that time when a bird pooped on me the same time I stepped in a

very muddy puddle.

25

26

Everybody loves resources

Spring 2019/2020

Resource contention:

• Printer needs paper…

• You need to buy some
paper…

• You need to print an order
form for paper…

• Printer needs paper…

27

Typically…

Spring 2019/2020

• Metaphor: intersection.

• The intersection is a shared
resource, much like a device or
the CPU.

• Multiplexing the intersection is
important to avoid crashes.

• When the streets aren’t busy,
cars just make it safely across.

It is fine when two
tasks can share a
resource without
conflict… they do
not need to
coördinate.

28

Deadlock: The traffic jam (it’s not very delicious)

Spring 2019/2020

• However, in some
circumstances, several cars
may reach the intersection at
the same time.

• If there is no previously
defined way to handle this,
they all wait for the others to
get out of the way.
▪ Forever.

• Deadlock occurs when multiple
tasks are waiting for each
other, making no progress.

Not fine if tasks
need a common
resource at the
same time without
an agreed way to
proceed.

29

Synchronization solves deadlock

Spring 2019/2020

• Deadlock is a bug that needs
extra consideration to avoid.

• In this case, you need some
method of making only some
of the cars (tasks) wait, while
letting others go.
▪ Traffic light, perhaps

• Beyond defining order,
synchronization helps avoid
these types of logical errors.

With synchronization,
tasks can agree which
get to go next, and
which have to wait.

30

Starved for attention…

Spring 2019/2020

• Another issue, related to
deadlock, is starvation where
the system makes progress but
one task is perpetually delayed.

• When some tasks have priority
over resources, they may not
give them up for other tasks.
▪ Those tasks wait forever.

• Without a traffic light, you rely
on people being nice. :(

When nobody yields
to a particular task
and gives up a shared
resource, that task
cannot proceed!

31

Starvation: a matter of fairness

Spring 2019/2020

• This can happen in situations where “fairness” scheduling goes awry.

• If you have a webserver, the OS might schedule that process whenever
there is some incoming requests.
▪ What if you are getting a lot of traffic!

▪ The OS might always schedule the webserver.

▪ Important background tasks might not run!

• Preventing starvation might be keeping track of how much time a
process has a resource and how long it has waited in line.
▪ Low-priority tasks start at the back of the line and move up the queue the longer

they wait… eventually cutting in front of high-priority tasks that start in the front.

• That’s just one idea. Scheduling resources is a very difficult problem!

32

Livelock: The hallway problem

Spring 2019/2020

• There is a narrow hallway.

• Let’s say you have two very polite
people.

• They walk toward each other… and try
very hard to get out of each other’s way.
▪ They keep insisting the other go ahead of

them.

• This is livelock, where two tasks are
actively signaling the other to go and
making no progress.

33

Careful design works around livelock

Spring 2019/2020

• Livelock can be solved using a tie-
breaking scheme.
▪ Just find something comparable and unique

among the tasks to create an arbitrary
priority.

• All threads have IDs, so one easy
strategy is to have the largest ID yield to
the smaller.
▪ This also helps starvation since livelock is

starvation to the extreme: where everybody
is starving.

34

Deadlock vs. Livelock

Spring 2019/2020

• In deadlock, all tasks are waiting for a signal that will never happen.
▪ They are inactively achieving nothing. (“ZZZZZZZZ”, “ZZZZZZZZ”)

• In contrast, livelock occurs when each task signals the other, and they
respond by signaling back. (“No, you.” “No… you!”)
▪ They are actively achieving nothing.

• Detecting that your program has a deadlock or livelock is tricky.
▪ When it does, it may only happen a small percentage of the time.

▪ In your OS course, you will learn more about deadlock detection and resolution.

35

Solving things

Spring 2019/2020

• Proper synchronization and planning can solve all these issues.
▪ Deadlock: Avoid patterns of critical sections that depend on each other.

▪ Livelock: Establish a tie-breaking mechanism (thread with smallest ID goes first!)

▪ Yet, it takes a good deal of programming experience to handle them.

• The wide prevalence of multiprocessing and multithreading capable
computers in the hands of average consumers is changing
programming.
▪ New (and old) languages are being pushed for their better handling of

concurrency issues.

▪ Best-practices and frameworks continue to adapt to avoid many of the pitfalls
we have discussed today.

▪ Pay attention in your compilers and OS course to hone your own skill!

36

basic API summary

Spring 2019/2020

• Thread creation
▪

• Join threads (wait until complete)
▪ Waits for the given thread to end.

• Getting thread ID
▪ Returns the thread ID of the current thread.

• Thread destruction (explicit)
▪ Attempts to preemptively exit the given thread.
▪ Ends current thread and returns the provided value.

37

synchronization API summary

Spring 2019/2020

• Semaphores
▪

▪

Creates a semaphore with the given initial value. (The second argument means it the semaphore
data is in shared memory. If non-zero, it can’t be seen by other threads.)

▪ Decrements counter unless it is 0 in which case it waits.

▪ Increments counter.

• Mutexes
▪

▪ Creates a mutex (unlocked).

▪ Waits until it can lock the mutex.

▪ Unlocks the mutex.

38

Summary

Spring 2019/2020

• Threads are a different way to provide concurrency in a program.
▪ Unlike process-level concurrency, threads share memory within the process.

• Synchronization primitives such as semaphores allow for creation of
critical sections; necessary for correct concurrent code.

• Incorrect code may result in a new set of logical errors.
▪ Race conditions – When execution order stochastically results in wrong behavior.

▪ Deadlock – When resources are contended so much the program freezes.

▪ Starvation – When a resource is greedily kept by a task, certain tasks freeze.

▪ Livelock – Starvation happens at every task… they all actively yield to each other.

