
CS 449 - Intro to Systems Software

Network Programming

A Client-Server Transaction
• Most network applications are based on the client-server

model:
• A server process and one or more client processes

• Server manages some resource

• Server provides service by manipulating resource for clients

• Server activated by request from client (vending machine
analogy)

Client
process

Server
process

1. Client sends request

3. Server sends response4. Client
handles

response

2. Server
handles
request

Resource

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

2

Hardware Organization of a Network Host

main
memory

I/O
bridge

MI

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

Expansion slots

network
adapter

network
3

Computer Networks

• A network is a hierarchical system of boxes and wires organized by
geographical proximity
• SAN* (System Area Network) spans cluster or machine room

• Switched Ethernet, Quadrics QSW, …

• LAN (Local Area Network) spans a building or campus
• Ethernet is most prominent example

• WAN (Wide Area Network) spans country or world
• Typically high-speed point-to-point phone lines

• An internetwork (internet) is an interconnected set of networks
• The Global IP Internet (uppercase “I”) is the most famous example of an internet

(lowercase “i”)

* Not to be confused with a Storage Area Network4

Logical Structure of an internet

• Ad hoc interconnection of networks

• No particular topology

• Vastly different router & link capacities

• Send packets from source to destination by hopping through
networks
• Router forms bridge from one network to another

• Different packets may take different routes

router

router

router
router

router

router

host
host

5

The Notion of an internet Protocol

• How is it possible to send bits across incompatible
LANs and WANs?

• Solution: protocol software running on each host and
router
• Protocol is a set of rules that governs how hosts and

routers should cooperate when they transfer data from
network to network.

• Smooths out the differences between the different
networks

6

What Does an internet Protocol Do?

• Provides a naming scheme
• An internet protocol defines a uniform format for host

addresses

• Each host (and router) is assigned at least one of these
internet addresses that uniquely identifies it

• Provides a delivery mechanism
• An internet protocol defines a standard transfer unit

(packet)

• Packet consists of header and payload
• Header: contains info such as packet size, source and destination

addresses

• Payload: contains data bits sent from source host

7

Global IP Internet (upper case)
• Most famous example of an internet

• Based on the TCP/IP protocol family
• IP (Internet Protocol)

• Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

• UDP (Unreliable Datagram Protocol)
• Uses IP to provide unreliable datagram delivery from

process-to-process

• TCP (Transmission Control Protocol)
• Uses IP to provide reliable byte streams from process-to-process over

connections

• Accessed via a mix of Unix file I/O and functions from the
sockets interface

8

Hardware and Software Organization
of an Internet Application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware

9

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses
• 128.2.203.179

2. The set of IP addresses is mapped to a set of
identifiers called Internet domain names

• 136.142.156.73 is mapped to www.cs.pitt.edu

3. A process on one Internet host can communicate
with a process on another Internet host over a
connection

10

(1) IP Addresses

• 32-bit IP addresses are stored in an IP address struct
• IP addresses are always stored in memory in network byte order

(big-endian byte order)

• True in general for any integer transferred in a packet header
from one machine to another.
• E.g., the port number used to identify an Internet connection.

/* Internet address structure */

struct in_addr {

uint32_t s_addr; /* network byte order (big-endian) */

};

Dotted Decimal Notation

• By convention, each byte in a 32-bit IP address is
represented by its decimal value and separated by a
period

• IP address: 0x8002C2F2 = 128.2.194.242

• Use getaddrinfo and getnameinfo functions to
convert between IP addresses and dotted decimal
format.

(2) Internet Domain Names

.net .edu .gov .com

pitt berkeleymit

cs sci

thoth
136.142.23.51

unnamed root

www
136.142.156.73

amazon

www
54.230.48.28

First-level domain names

Second-level domain names

Third-level domain names

Domain Naming System (DNS)

• The Internet maintains a mapping between IP
addresses and domain names in a huge worldwide
distributed database called DNS

• Conceptually, programmers can view the DNS
database as a collection of millions of host entries.
• Each host entry defines the mapping between a set of

domain names and IP addresses.

Properties of DNS Mappings

• Can explore properties of DNS mappings using
nslookup

• (Output edited for brevity)

• Each host has a locally defined domain name
localhost which always maps to the loopback address
127.0.0.1

• Use hostname to determine real domain name of local
host:

linux> nslookup localhost

Address: 127.0.0.1

linux> hostname

thoth.cs.pitt.edu

Properties of DNS Mappings (cont)

• Simple case: one-to-one mapping between domain name
and IP address:

• Multiple domain names mapped to the same IP address:

linux> nslookup thoth.cs.cmu.edu

Address: 136.142.23.51

linux> nslookup cs.pitt.edu

Address: 136.142.156.73

linux> nslookup sci.pitt.edu

Address: 136.142.156.73

Properties of DNS Mappings (cont)

• Multiple domain names mapped to multiple IP
addresses:

• Some valid domain names don’t map to any IP address:

linux> nslookup www.twitter.com

Address: 104.244.42.65

Address: 104.244.42.129

Address: 104.244.42.193

Address: 104.244.42.1

linux> nslookup www.twitter.com

Address: 104.244.42.129

Address: 104.244.42.65

Address: 104.244.42.193

Address: 104.244.42.1

linux> nslookup bla.cs.pitt.edu

(No Address given)

(3) Internet Connections
• Clients and servers communicate by sending streams of bytes

over connections. Each connection is:
• Point-to-point: connects a pair of processes.

• Full-duplex: data can flow in both directions at the same time,

• Reliable: stream of bytes sent by the source is eventually received by
the destination in the same order it was sent.

• A socket is an endpoint of a connection
• Socket address is an IPaddress:port pair

• A port is a 16-bit integer that identifies a process:
• Ephemeral port: Assigned automatically by client kernel when client

makes a connection request.

• Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

Well-known Service Names and Ports

• Popular services have permanently assigned well-known ports and
corresponding well-known service names:
• echo servers: echo 7

• ftp servers: ftp 21

• ssh servers: ssh 22

• email servers: smtp 25

• Web servers: http 80

• Mappings between well-known ports and service names is contained
in the file /etc/services on each Linux machine.

Anatomy of a Connection
• A connection is uniquely identified by the socket

addresses of its endpoints (socket pair)
• (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

Sockets Interface
• Set of system-level functions used in conjunction

with Unix I/O to build network applications.

• Created in the early 80’s as part of the original
Berkeley distribution of Unix that contained an
early version of the Internet protocols.

• Available on all modern systems
• Unix variants, Windows, OS X, IOS, Android, ARM

Client Server

Sockets
• What is a socket?

• To the kernel, a socket is an endpoint of communication

• To an application, a socket is a file descriptor that lets the
application read/write from/to the network
• Remember: All Unix I/O devices, including networks, are modeled as

files

• Clients and servers communicate with each other by reading from
and writing to socket descriptors

• The main distinction between regular file I/O and socket I/O is how
the application “opens” the socket descriptors

clientfd serverfd

Socket Programming Example
• Echo server and client

• Server
• Accepts connection request

• Repeats back lines as they are typed

• Client
• Requests connection to server

• Repeatedly:
• Read line from terminal

• Send to server

• Read reply from server

• Print line to terminal

Echo Server/Client Session Example

thoth $./echoserver

Server connected to client. (A)

server received 26 bytes (B)

server received 17 bytes (C)

thoth $./echoclient (A)

This line is being echoed (B)

This line is being echoed

This one is, too (C)

This one is, too

^D

Client

Server

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

socket read

socket write
socket read

terminal write

terminal read

socket write

Connection
request

socket read

close

close
EOF

accept

listen

connect

Await connection
request from client

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

read

write
read

fputs

fgets

write

Connection
request

read

close

close
EOF

Await connection
request from client

accept

listen

connect

Echo Server: Main Routine
C ()

We create a socket.

We define what port and
protocol we want

We bind ourselves to that port.

We wait until somebody
requests a connection.

We accept that connection.

We wait until data
arrives and read it.

We write it back out. Stopping our
loop when nothing was read.

We close all of our connections.

2. Start client

Client

3. Exchange
data

1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Server

read

write
read

fputs

fgets

write

Connection
request

read

close

close
EOF

Await connection
request from client

accept

listen

connect

Echo Client: Main Routine
C ()

We create a socket.

Using the Internet protocol.

Connecting to localhost

Actually request a connection.

If we got here, the server
accepted our connection!

This loop reads from stdin (user input)

We write everything to the server!

And print out everything the
server sends us.

We clean up when the loop ends (when
no user input via CTRL+D)

Read and write system calls
• Same interface used to read/write files.

• Because sockets are also files! Neat.

• read returns a count of 0 only if it encounters EOF

• So, it is useful to notice if the other machine disconnected.

• Calls to read and write can be interleaved arbitrarily on the
same file descriptor (socket, file on disk, etc)

#include <unistd.h>

ssize_t read(int fd, void *usrbuf, size_t n);

ssize_t write(int fd, void *usrbuf, size_t n);

Return: number of bytes transferred if OK, 0 on EOF (read only), -1 on error

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

listen

connect

acceptconnect

getaddrinfogetaddrinfo

connect/accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from accept.
Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

Connected vs. Listening Descriptors
• Listening descriptor

• End point for client connection requests

• Created once and exists for lifetime of the server

• Connected descriptor
• End point of the connection between client and server

• A new descriptor is created each time the server accepts a
connection request from a client

• Exists only as long as it takes to service client

• Why the distinction?
• Allows for concurrent servers that can communicate over many

client connections simultaneously
• E.g., Each time we receive a new request, we fork a child to handle the request

Testing Servers Using telnet

• The telnet program is invaluable for testing
servers that transmit ASCII strings over Internet
connections
• Our simple echo server

• Web servers

• Mail servers

• Usage:
• linux> telnet <host> <portnumber>

• Creates a connection with a server running on <host>
and listening on port <portnumber>

Testing the Echo Server With telnet
wilkiepedia.org $./echoserver

Server connected to client.

Server received 11 bytes

Server received 8 bytes

thoth $ telnet wilkiepedia.org 9997

Trying 128.2.210.175...

Connected to wilkiepedia.org (128.2.210.175).

Escape character is '^]'.

Hi there!

Hi there!

Howdy!

Howdy!

^]

telnet> quit

Connection closed.

thoth $

Web Server Basics

• Clients and servers
communicate using the
HyperText Transfer Protocol
(HTTP)

• Client and server establish TCP
connection

• Client requests content

• Server responds with requested
content

• Client and server close
connection (eventually)

• Current version is HTTP/1.1

• RFC 2616, June, 1999.

Web
server

HTTP request

HTTP response
(content)

Web
client

(browser)

http://www.w3.org/Protocols/rfc2616/rfc2616.html

IP

TCP

HTTP

Datagrams

Streams

Web content

Web Content

• Web servers return content to clients
• content: a sequence of bytes with an associated MIME (Multipurpose

Internet Mail Extensions) type

• Example MIME types
• text/html HTML document

• text/plain Unformatted text

• image/gif Binary image encoded in GIF format

• image/png Binar image encoded in PNG format

• image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

Static and Dynamic Content

• The content returned in HTTP responses can be either static or dynamic
• Static content: content stored in files and retrieved in response to an HTTP request

• Examples: HTML files, images, audio clips, Javascript programs

• Request identifies which content file

• Dynamic content: content produced on-the-fly in response to an HTTP request
• Example: content produced by a program executed by the server on behalf of the client

• Request identifies file containing executable code

• Bottom line: Web content is associated with a file that is managed by the
server

URLs and how clients and servers use
them
• Unique name for a file: URL (Universal Resource Locator)
• Example URL:
http://www.google.edu:80/index.html

• Clients use prefix (http://www.google.edu:80) to
infer:
• What kind (protocol) of server to contact (HTTP)
• Where the server is (www.google.com)
• What port it is listening on (80)

• Servers use suffix (/index.html) to:
• Determine if request is for static or dynamic content.

• No hard and fast rules for this
• One convention: executables reside in cgi-bin directory

• Find file on file system
• Initial “/” in suffix denotes home directory for requested content.
• Minimal suffix is “/”, which server expands to configured default

filename (usually, index.html)

HTTP Requests

• HTTP request is a request line, followed by zero or more
request headers

• Request line: <method> <uri> <version>

• <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

• <uri> is typically URL for proxies, URL suffix for servers

• A URL is a type of URI (Uniform Resource Identifier)

• See http://www.ietf.org/rfc/rfc2396.txt

• <version> is HTTP version of request (HTTP/1.0 or HTTP/1.1)

• Request headers: <header name>: <header data>

• Provide additional information to the server

http://www.ietf.org/rfc/rfc2396.txt

HTTP Responses
• HTTP response is a response line followed by zero or more response headers, possibly

followed by content, with blank line (“\r\n”) separating headers from content.

• Response line:

<version> <status code> <status msg>

• <version> is HTTP version of the response

• <status code> is numeric status

• <status msg> is corresponding English text

• 200 OK Request was handled without error

• 301 Moved Provide alternate URL

• 404 Not found Server couldn’t find the file

• Response headers: <header name>: <header data>

• Provide additional information about response

• Content-Type: MIME type of content in response body

• Content-Length: Length of content in response body

Example HTTP Transaction
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET / HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

Client: empty line terminates headers

HTTP/1.1 301 Moved Permanently Server: response line

Date: Wed, 05 Nov 2014 17:05:11 GMT Server: followed by 5 response headers

Server: Apache/1.3.42 (Unix) Server: this is an Apache server

Location: http://www.cmu.edu/index.shtml Server: page has moved here

Transfer-Encoding: chunked Server: response body will be chunked

Content-Type: text/html; charset=... Server: expect HTML in response body

Server: empty line terminates headers

15c Server: first line in response body

<HTML><HEAD> Server: start of HTML content

…

</BODY></HTML> Server: end of HTML content

0 Server: last line in response body

Connection closed by foreign host. Server: closes connection

 HTTP standard requires that each text line end with “\r\n”

 Blank line (“\r\n”) terminates request and response headers

Example HTTP Transaction, Take 2

whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET /index.shtml HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

Client: empty line terminates headers

HTTP/1.1 200 OK Server: response line

Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers

Server: Apache/1.3.42 (Unix)

Transfer-Encoding: chunked

Content-Type: text/html; charset=...

Server: empty line terminates headers

1000 Server: begin response body

<html ..> Server: first line of HTML content

…

</html>

0 Server: end response body

Connection closed by foreign host. Server: close connection

EXTRA SLIDES

(Useful material for Proxy Lab)
WHICH WE ARE NOT DOING

DO NOT WORRY

Proxies
• A proxy is an intermediary between a client and an origin

server
• To the client, the proxy acts like a server

• To the server, the proxy acts like a client

• This is what you will be implementing in Proxy Lab

Client Proxy
Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response

Why Proxies?
• Can perform useful functions as requests and responses

pass by
• Examples: Caching, logging, anonymization, filtering,

transcoding

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more expensive global network

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA listSA list

Sockets Interface: socket
• Clients and servers use the socket function to create a

socket descriptor:

• Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listenfdclientfd

SA list SA list

Sockets Interface: bind
• A server uses bind to ask the kernel to associate the server’s

socket address with a socket descriptor:

Recall: typedef struct sockaddr SA;

• Process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd

• Similarly, writes to sockfd are transferred along connection
whose endpoint is addr

Best practice is to use getaddrinfo to supply the arguments
addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

listenfd

listenfd <-> SA

SA list

clientfd

Sockets Interface: listen
• By default, kernel assumes that descriptor from socket

function is an active socket that will be on the client
end of a connection.

• A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

• Converts sockfd from an active socket to a listening
socket that can accept connection requests from
clients.

• backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests.

int listen(int sockfd, int backlog);

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

clientfd

SA list

listenfd

listenfd <-> SA

listening listenfd

Sockets Interface: accept
• Servers wait for connection requests from clients by

calling accept:

• Waits for connection request to arrive on the
connection bound to listenfd, then fills in
client’s socket address in addr and size of the
socket address in addrlen.

• Returns a connected descriptor that can be used to
communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

SA list SA list

clientfd listenfd

listenfd <-> SA

Sockets Interface: connect
• A client establishes a connection with a server by calling

connect:

• Attempts to establish a connection with server at socket
address addr

• If successful, then clientfd is now ready for reading and writing.

• Resulting connection is characterized by socket pair

(x:y, addr.sin_addr:addr.sin_port)

• x is client address

• y is ephemeral port that uniquely identifies client process on
client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

connected connfdconnected (to SA) clientfd

SA list SA list

clientfd listenfd

listenfd <-> SA

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Sockets Helper: open_clientfd
• Establish a connection with a server

int open_clientfd(char *hostname, char *port) {

int clientfd;

struct addrinfo hints, *listp, *p;

/* Get a list of potential server addresses */

memset(&hints, 0, sizeof(struct addrinfo));

hints.ai_socktype = SOCK_STREAM; /* Open a connection */

hints.ai_flags = AI_NUMERICSERV; /* …using numeric port arg. */

hints.ai_flags |= AI_ADDRCONFIG; /* Recommended for connections */

getaddrinfo(hostname, port, &hints, &listp);

csapp.c

getaddrinfo Linked List

• Clients: walk this list, trying each socket address in turn,
until the calls to socket and connect succeed.

• Servers: walk the list until calls to socket and bind
succeed.

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

Sockets Helper: open_clientfd
(cont)

/* Walk the list for one that we can successfully connect to */

for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */

if ((clientfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

/* Connect to the server */

if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1)

break; /* Success */

close(clientfd); /* Connect failed, try another */

}

/* Clean up */

freeaddrinfo(listp);

if (!p) /* All connects failed */

return -1;

else /* The last connect succeeded */

return clientfd;

} csapp.c

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Sockets Helper: open_listenfd

• Create a listening descriptor that can be used to
accept connection requests from clients.

int open_listenfd(char *port)

{

struct addrinfo hints, *listp, *p;

int listenfd, optval=1;

/* Get a list of potential server addresses */

memset(&hints, 0, sizeof(struct addrinfo));

hints.ai_socktype = SOCK_STREAM; /* Accept connect. */

hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* …on any IP addr */

hints.ai_flags |= AI_NUMERICSERV; /* …using port no. */

getaddrinfo(NULL, port, &hints, &listp);

csapp.c

Sockets Helper: open_listenfd
(cont)

/* Walk the list for one that we can bind to */

for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */

if ((listenfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

/* Eliminates "Address already in use" error from bind */

setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

(const void *)&optval , sizeof(int));

/* Bind the descriptor to the address */

if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)

break; /* Success */

close(listenfd); /* Bind failed, try the next */

} csapp.c

Sockets Helper: open_listenfd
(cont)

/* Clean up */

freeaddrinfo(listp);

if (!p) /* No address worked */

return -1;

/* Make it a listening socket ready to accept conn. requests */

if (listen(listenfd, LISTENQ) < 0) {

close(listenfd);

return -1;

}

return listenfd;

} csapp.c

 Key point: open_clientfd and open_listenfd are
both independent of any particular version of IP.

Case Study

Tiny Web Server

Tiny Web Server
• Tiny Web server described in textbook (CS:APP)

• Tiny is a sequential Web server

• Serves static and dynamic content to real browsers
• text files, HTML files, GIF, PNG, and JPEG images

• 239 lines of commented C code

• Not as complete or robust as a real Web server

• You can break it with poorly-formed HTTP
requests (e.g., terminate lines with “\n” instead
of “\r\n”)

Tiny Operation

• Accept connection from client

• Read request from client (via connected socket)

• Split into <method> <uri> <version>
• If method not GET, then return error

• If URI contains “cgi-bin” then serve dynamic content
• (Would do wrong thing if had file “abcgi-bingo.html”)

• Fork process to execute program

• Otherwise serve static content
• Copy file to output

Tiny Serving Static Content
void serve_static(int fd, char *filename, int filesize)

{

int srcfd;

char *srcp, filetype[MAXLINE], buf[MAXBUF];

/* Send response headers to client */

get_filetype(filename, filetype);

sprintf(buf, "HTTP/1.0 200 OK\r\n");

sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);

sprintf(buf, "%sConnection: close\r\n", buf);

sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);

sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);

write(fd, buf, strlen(buf));

/* Send response body to client */

srcfd = open(filename, O_RDONLY, 0);

srcp = mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);

close(srcfd);

write(fd, srcp, filesize);

munmap(srcp, filesize);

} tiny.c

Serving Dynamic Content

• Client sends request to
server

• If request URI contains the
string “/cgi-bin”, the
Tiny server assumes that
the request is for dynamic
content

Client Server

GET /cgi-bin/env.pl HTTP/1.1

Serving Dynamic Content (cont)

• The server creates a child
process and runs the
program identified by the
URI in that process

Client Server

env.pl

fork/exec

Serving Dynamic Content (cont)

• The child runs and
generates the dynamic
content

• The server captures the
content of the child and
forwards it without
modification to the client

Client Server

env.pl

Content

Content

Issues in Serving Dynamic Content

• How does the client pass program
arguments to the server?

• How does the server pass these
arguments to the child?

• How does the server pass other
info relevant to the request to the
child?

• How does the server capture the
content produced by the child?

• These issues are addressed by the
Common Gateway Interface (CGI)
specification.

Client Server

Content

Content

Request

Create

env.pl

CGI

• Because the children are written according to the CGI spec, they are often
called CGI programs.

• However, CGI really defines a simple standard for transferring information
between the client (browser), the server, and the child process.

• CGI is the original standard for generating dynamic content. Has been
largely replaced by other, faster techniques:
• E.g., fastCGI, Apache modules, Java servlets, Rails controllers

• Avoid having to create process on the fly (expensive and slow).

The add.com Experience

Output page

host port CGI program

arguments

Serving Dynamic Content With GET
• Question: How does the client pass arguments to the

server?

• Answer: The arguments are appended to the URI

• Can be encoded directly in a URL typed to a browser
or a URL in an HTML link
• http://add.com/cgi-bin/adder?15213&18213

• adder is the CGI program on the server that will do the
addition.

• argument list starts with “?”

• arguments separated by “&”

• spaces represented by “+” or “%20”

Serving Dynamic Content With GET

• URL suffix:
• cgi-bin/adder?15213&18213

• Result displayed on browser:

Welcome to add.com: THE Internet addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

Serving Dynamic Content With GET

• Question: How does the server pass these
arguments to the child?

• Answer: In environment variable QUERY_STRING
• A single string containing everything after the “?”

• For add: QUERY_STRING = “15213&18213”

/* Extract the two arguments */

if ((buf = getenv("QUERY_STRING")) != NULL) {

p = strchr(buf, '&');

*p = '\0';

strcpy(arg1, buf);

strcpy(arg2, p+1);

n1 = atoi(arg1);

n2 = atoi(arg2);

} adder.c

void serve_dynamic(int fd, char *filename, char *cgiargs)

{

char buf[MAXLINE], *emptylist[] = { NULL };

/* Return first part of HTTP response */

sprintf(buf, "HTTP/1.0 200 OK\r\n");

Rio_writen(fd, buf, strlen(buf));

sprintf(buf, "Server: Tiny Web Server\r\n");

Rio_writen(fd, buf, strlen(buf));

if (Fork() == 0) { /* Child */

/* Real server would set all CGI vars here */

setenv("QUERY_STRING", cgiargs, 1);

Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */

Execve(filename, emptylist, environ); /* Run CGI program */

}

Wait(NULL); /* Parent waits for and reaps child */

}

Serving Dynamic Content with GET

• Question: How does the server capture the content produced by the child?

• Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

tiny.c

Serving Dynamic Content with GET

/* Make the response body */

sprintf(content, "Welcome to add.com: ");

sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);

sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",

content, n1, n2, n1 + n2);

sprintf(content, "%sThanks for visiting!\r\n", content);

/* Generate the HTTP response */

printf("Content-length: %d\r\n", (int)strlen(content));

printf("Content-type: text/html\r\n\r\n");

printf("%s", content);

fflush(stdout);

exit(0); adder.c

 Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

GET /cgi-bin/adder?15213&18213 HTTP/1.0

HTTP/1.0 200 OK

Server: Tiny Web Server

Connection: close

Content-length: 117

Content-type: text/html

Welcome to add.com: THE Internet addition portal.

<p>The answer is: 15213 + 18213 = 33426

<p>Thanks for visiting!

Connection closed by foreign host.

bash:makoshark>

Serving Dynamic Content With GET

HTTP request sent by client

HTTP response generated
by the server

HTTP response generated
by the CGI program

For More Information

• W. Richard Stevens et. al. “Unix Network
Programming: The Sockets Networking API”,
Volume 1, Third Edition, Prentice Hall, 2003
• THE network programming bible.

• Michael Kerrisk, “The Linux Programming
Interface”, No Starch Press, 2010
• THE Linux programming bible.

• Code examples
• csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c,

tiny.c, adder.c

• You can use any of this code in your assignments.

BONUS
SLIDES

The following slides are for those curious.
You will NOT be expected to know this material.

Lowest Level: Ethernet Segment

• Ethernet segment consists of a collection of hosts
connected by wires (twisted pairs) to a hub

• Spans room or floor in a building

• Operation
• Each Ethernet adapter has a unique 48-bit address (MAC address)

• E.g., 00:16:ea:e3:54:e6

• Hosts send bits to any other host in chunks called frames
• Hub slavishly copies each bit from each port to every other port

• Every host sees every bit

[Note: Hubs are obsolete. Bridges (switches, routers) became cheap enough to replace them]

host host host

hub
100 Mb/s100 Mb/s

port

Next Level: Bridged Ethernet Segment

• Spans building or campus

• Bridges cleverly learn which hosts are reachable from which
ports and then selectively copy frames from port to port

host host host host host

hub hubbridge100 Mb/s 100 Mb/s

host host

hub
100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

hosthost

hub

A B

C

X

Y

Conceptual View of LANs
• For simplicity, hubs, bridges, and wires are often shown as a collection of

hosts attached to a single wire:

host host host...

Next Level: internets
• Multiple incompatible LANs can be physically connected by

specialized computers called routers

• The connected networks are called an internet (lower case)

host host host... host host host...

WAN WAN

LAN 1 and LAN 2 might be completely different, totally incompatible

(e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, …)

router router router

LAN 1 LAN 2

LAN2

Transferring internet Data Via
Encapsulation

protocol
software

client

LAN1
adapter

Host ALAN1

data(1)

data PH FH1(4)

data PH FH2(6)

data(8)

data PH FH2 (5)

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router
data PH(3) FH1

data PH FH1(2)

internet packet

LAN1 frame

(7) data PH FH2

protocol
software

server

LAN2
adapter

Host B

PH: internet packet header
FH: LAN frame header

Aside: IPv4 and IPv6
• The original Internet Protocol, with its 32-bit addresses,

is known as Internet Protocol Version 4 (IPv4)

• 1996: Internet Engineering Task Force (IETF) introduced
Internet Protocol Version 6 (IPv6) with 128-bit
addresses
• Intended as the successor to IPv4

• Majority of Internet traffic still carried by IPv4

• We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.

IPv6 traffic at Google

Socket Address Structures
• Generic socket address:

• For address arguments to connect, bind, and accept
• Necessary only because C did not have generic (void *)

pointers when the sockets interface was designed
• For casting convenience, we adopt the Stevens convention:
typedef struct sockaddr SA;

struct sockaddr {

uint16_t sa_family; /* Protocol family */

char sa_data[14]; /* Address data */

};

sa_family

Family Specific

Socket Address Structures
• Internet (IPv4) specific socket address:

• Must cast (struct sockaddr_in *) to (struct
sockaddr *) for functions that take socket address
arguments.

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {

uint16_t sin_family; /* Protocol family (always AF_INET) */

uint16_t sin_port; /* Port num in network byte order */

struct in_addr sin_addr; /* IP addr in network byte order */

unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

Host and Service Conversion:
getaddrinfo
• getaddrinfo is the modern way to convert string

representations of hostnames, host addresses, ports, and
service names to socket address structures.
• Replaces obsolete gethostbyname and getservbyname

funcs.

• Advantages:
• Reentrant (can be safely used by threaded programs).
• Allows us to write portable protocol-independent code

• Works with both IPv4 and IPv6

• Disadvantages
• Somewhat complex
• Fortunately, a small number of usage patterns suffice in most

cases.

Host and Service Conversion:
getaddrinfo

• Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

• Helper functions:
• freeadderinfo frees the entire linked list.

• gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */

const char *service, /* Port or service name */

const struct addrinfo *hints,/* Input parameters */

struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

Linked List Returned by
getaddrinfo

• Clients: walk this list, trying each socket address in turn,
until the calls to socket and connect succeed.

• Servers: walk the list until calls to socket and bind
succeed.

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

addrinfo Struct

• Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket
function.

• Also points to a socket address struct that can be
passed directly to connect and bind functions.

struct addrinfo {

int ai_flags; /* Hints argument flags */

int ai_family; /* First arg to socket function */

int ai_socktype; /* Second arg to socket function */

int ai_protocol; /* Third arg to socket function */

char *ai_canonname; /* Canonical host name */

size_t ai_addrlen; /* Size of ai_addr struct */

struct sockaddr *ai_addr; /* Ptr to socket address structure */

struct addrinfo *ai_next; /* Ptr to next item in linked list */

};

Host and Service Conversion:
getnameinfo
• getnameinfo is the inverse of getaddrinfo, converting a

socket address to the corresponding host and service.
• Replaces obsolete gethostbyaddr and getservbyport

funcs.
• Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */

char *host, size_t hostlen, /* Out: host */

char *serv, size_t servlen, /* Out: service */

int flags); /* optional flags */

Conversion Example (writing our own nslookup)

int main(int argc, char **argv)

{

struct addrinfo *p, *listp, hints;

char buf[MAXLINE];

int rc, flags;

/* Get a list of addrinfo records */

memset(&hints, 0, sizeof(struct addrinfo));

// hints.ai_family = AF_INET; /* IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* Connections only */

if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {

fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));

exit(1);

}

hostinfo.c

Conversion Example (cont)

/* Walk the list and display each IP address */

flags = NI_NUMERICHOST; /* Display address instead of name */

for (p = listp; p; p = p->ai_next) {

getnameinfo(p->ai_addr, p->ai_addrlen,

buf, MAXLINE, NULL, 0, flags);

printf("%s\n", buf);

}

/* Clean up */

freeaddrinfo(listp);

exit(0);

} hostinfo.c

Running hostinfo
whaleshark> ./hostinfo localhost

127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu

128.2.210.175

whaleshark> ./hostinfo twitter.com

199.16.156.230

199.16.156.38

199.16.156.102

199.16.156.198

whaleshark> ./hostinfo google.com

172.217.15.110

2607:f8b0:4004:802::200e

