
Files and

Spring 2019/2020

wilkie

Introduction to
Systems Software

Directories

17

Spring 2019/2020

The Nature of Data
The Lord of the Files

2

3

Files and Data

Spring 2019/2020

• What is a file? What is “data”? What is a binary file vs. a text file?

files.o cat.giffiles.c

4

Formats

Spring 2019/2020

• What is a file “format”? Why are there so many different image types??
▪ All files are flat binary blobs of information. How can we tell them apart?

• Well, remember ELF? Our executable format?
▪ And the MAGIC NUMBER inside the box?

• This is one way we differentiate different files.
▪ Archivists and librarians keep track of different

file formats when they digitize, store, and retrieve
data. They maintain the PRONOM database of formats.

• Ok. How do we read files?

5

C Programming: Manipulating Files with stdio

Spring 2019/2020

• Here is a simple C program that creates a
file called “ ” and writes a string
to it, then opens it again to print it out.

• : Opens a file with the given path. The
string that follows is the access mode.
“ ” opens for writing; overwrites file.
“ ” opens read-only.

• : Reads to the provided buffer the given
number of bytes. (The “ ” is the number
of elements to read if reading an array.)

• : Writes from the provided buffer the given
number of bytes. (Similar to)

• : Moves the current file position.

• : Returns the current file position.

C ()

Open for
writing

Open read-only

Seek 0 from end

Seek to byte 0

Politely close the file

6

C Programming: Manipulating Files with syscalls

Spring 2019/2020

• Here is a simple C program that creates a
file called “ ” and writes a string
to it, then opens it again to print it out.

• : Opens a file with the given path. The
value that follows is the access mode.

opens for writing.
creates the file, if needed.
removes the data in the file.
opens read-only.

• : Reads to the provided buffer the given
number of bytes.

• : Writes from the provided buffer the given
number of bytes. (Similar to)

• : Moves the current file position. Returns
the new position.

C ()

Open for
writing

Open read-only
Seek to end

Seek to byte 0

Politely close the file

7

Everything is a “file”

Spring 2019/2020

• UNIX makes lots of things “files” in a
non-traditional sense.

• Sockets, named pipes, all kinds of exotic
things. Directories are files in the
traditional sense (stored on disk
properly)

• You can use the , , and
system calls with any of these diverse
set of data streams. The Internet

8

How data is stored…

Spring 2019/2020

• Data in RAM is generally volatile memory.
▪ It disappears after you shut off your computer.

• So, you want some kind of persistent memory.
▪ Storing data on disk involves creating a physical

representation of that binary data.

• Fun fact: there are non-volatile (persistent)
main memories in development. (NVRAM)
▪ They are really neat! (and slow!)

▪ But wow they really complicate things!!
• Consider the implications.

• Let’s dig in…

Spring 2019/2020

Disks
You throw them and dogs chase them. Wait.. no… don’t do that.

9

10

Floppy Disks

Spring 2019/2020

• Data is stored in analog on magnetic material.
▪ I love them.

• Buy me a random box for my birthday, please.
• When is my birthday? It is everyday.

• Termed “floppy” due to the soft, flexible
nature of the magnetic material.

• Wait. Magnets?

• How do you store data… with magnets?
▪ If you’re thinking “they have two poles… so they

are binary natured,” then you are on to something.

11

Representing continuous data…

Spring 2019/2020

Different waveform streams

• If you have some (continuous) data, represented by a waveform…

• How to transmit/store that wave?

• Amplitude modulation…
▪ Send pulses of data sampling the wave.

▪ Data encoded in the amplitude of pulse.

• Frequency modulation…
▪ Data encoded in variation of frequency

of pulse. (Yes, like FM radio)

▪ Disks actually store data using a form of this encoding!

12

Data and magnets… how do they work

Spring 2019/2020

• We can use magnets to represent and (discrete binary)
▪ The drive’s read head contains a sensor that detects the “magnetic flux”

▪ It can sense a change in magnetism over time.
• This shows the ideal world, without any modulation:

S

N

N

S

S

N

S

N

S

N

S

N

N

S

N

S

N

S

North and South poles indicate stored values

13

The peril of nature…

Spring 2019/2020

• The magnetic drives read the change in magnetism.
▪ It is difficult to tell the difference between two consecutive magnets…

▪ This is also because co-aligned magnets HATE being next to each other.
• Opposites attract, n’at. (They repel and affect each other’s signal)

S

N

N

S

S

N

S

N

S

N

S

N

N

S

N

S

N

S

14

N

S

N

S

S

N

S

N

S

N

N

S

The peril of nature…

Spring 2019/2020

• So, we can give up almost half of our data to add synchronization.
▪ When we read, every other “sense” affects the next read.

▪ If we read a “0” and then sense a change, the next bit stays the same.
• If we sense a delay (long frequency), it is a “1” and we continue. (Modified-FM Encoding)

S

N

S

N

N

S

Swaps bit

Bounds the amount of “0”s physically stored.

Senses delay

15

Disk Drives

Spring 2019/2020

• Also known as a “hard disk” due to the
inflexible nature of its magnetic material.

• Data is also stored digitally using a physical
medium, such as, again, magnets.
▪ Uses a similar yet stronger encoding scheme.

• Mechanical parts.
▪ Can read random access, but it is slower than

reading data sequentially (in physical order).

• Bits are hard… let’s start abstracting…

Platter

Head

16

The platter matters:

Spring 2019/2020

• Magnetic disk is represented by a set of
stacked platters with magnetic bits.

• A cylinder is a subdivision of platters (a
track is such a subdivision on a single
platter.)

• A sector is a subdivision of a
cylinder/track.
▪ You typically read information from a

disk in units of sectors.

▪ Files are, generally, a set of sectors.
Cylinder

Sector

17

Making heads turn (actually, they don’t turn at all)

Spring 2019/2020

• Magnetic disk is represented by a set of
stacked platters with magnetic bits.
▪ There may be several platters.

▪ Each read by at least one head.

▪ Access time is how long it takes to read a sector.

• As a head moves, it goes to a different cylinder.
▪ As the platter spins, the head reads

a different sector.

• You can potentially read multiple sectors in
parallel.
▪ So how should we layout data on disk to take

advantage of this?

18

• Seek time is the time it takes for the head to get into
position. Latency: the time for the platter to spin.
▪ Data is located at a two-dimensional coordinate

on a spinning surface.
• so the math is not trivial.

• Seek time is relative to the current
position of the head.
▪ The closer the next bit of data you need…

• The sooner it will get there.

• So… to reduce the seek time to nil…
▪ We position adjacent data in the same

cylinder and respective sector.

▪ Next set goes into subsequent sector. Heads don’t move; the platters spin.

Making best use of sequential access

Spring 2019/2020

19

• Seek time is the time it takes for the head to get into
position. Latency: the time for the platter to spin.
▪ Data is located at a two-dimensional coordinate

on a spinning surface.
• so the math is not trivial.

• Seek time is relative to the current
position of the head.
▪ The closer the next bit of data you need…

• The sooner it will get there.

• Here, the head does not have to move at
all and blocks 0 and 1 are read easily.
▪ Yet, to read block 2, we have to wait for the platter

to completely spin back around!! Seek time is zero, but maximum latency loss.

Ain’t no platter like a hard disk platter ‘cause a hard disk platter don’t stop

Spring 2019/2020

20

• Seek time is the time it takes for the head to get into
position. Latency: the time for the platter to spin.
▪ Data is located at a two-dimensional coordinate

on a spinning surface.
• so the math is not trivial.

• Seek time is relative to the current
position of the head.
▪ The closer the next bit of data you need…

• The sooner it will get there.

• Yikes! Blocks are in different cylinders
and subsequent blocks are behind the head.
▪ Worst case! Latency and seek time really suffer.

▪ Need to keep data in order! How do we organize data on disk?

Ain’t no platter like a hard disk platter ‘cause a hard disk platter don’t stop

Spring 2019/2020

Spring 2019/2020

File Systems
Yet another abstraction… moving toward applications.

21

22

File Systems

Spring 2019/2020

• There are many ways of representing files on the disks themselves.

• As you know, you are familiar with:
▪ Files having names!

▪ Directories/folders for organization

▪ Perhaps special files such as symbolic-links/shortcuts

• A file system entails describing how we represent:
▪ File data (of course)

▪ The location of the file (a file path)

▪ Meta data about the file (what kind of file?)

▪ Access control (who can access the file)

23

File Metadata

Spring 2019/2020

• There is a long list of possible
metadata associated with files:
▪ The file size.

▪ The file name.

▪ When it was last accessed.

▪ Who created it and when.

• And access control:
▪ Who can read it.

▪ Who can write it.

▪ Who can run it.

24

Linux/UNIX metadata:

Spring 2019/2020

25

Operating Systems and Files

Spring 2019/2020

• The function returns a file descriptor, an integer that identifies
the open file in the process.
▪ Every process can have open files, but none are shared across processes.

• On Linux/UNIX, some file descriptors are established automatically
for every process by the shell:
▪ – the output file (can be a file on disk! Recall terminal redirection.)

▪ – a file for error output.

▪ – the input file (could be a file on disk… or user input in the terminal.)

• The OS maintains a table of open files per process. When it sees a
syscall such as or , it uses that table to determine the file.

26

Processes and Files

Spring 2019/2020

• The OS maintains a table of open files per process. When it sees a
syscall such as or , it uses that table to determine the file.

CPU State A:
Registers

,

.text

.data

.bss

PID: 4356

Process

Page Table A

stack

File Table

• The table contains a set of
open files indexed by the file
descriptor.

• Several files are generally
opened for you by the shell.

• Each open file maintains its
own current position.
▪ / manipulate it.

27

I nodes, you nodes, we all nodes for inodes

Spring 2019/2020

• Files are a set of disk blocks.
▪ Hopefully laid out in a nice order!

• How do we organize these?
▪ Similar to virtual memory!

• We use a disk block that holds
addresses to other blocks.
▪ It is a simple table. The blocks that

make up the file are in the order
reflected by the table.

• An index node is this main block.
▪ Often seen shortened to “inode”

main.c

inode

28

File systems are about organizing the disk

Spring 2019/2020

main.c

inode

29

Cheap Versioning: WAFL

Spring 2019/2020

Here is WAFL performing “snapshot” backups of files:

snapshot

inode inode

We can keep around snapshots and back them up
to remote systems at our leisure.

Once we back them up, we can
overwrite the snapshot inode with the current inode.

Small changes overwrite
only parts of the file.

The prior
state

remains.

https://www.cs.princeton.edu/courses/archive/fall04/cos318/docs/netapp.pdf

30

Hierarchies

Spring 2019/2020

• Directories maintain strict hierarchical structure for files in the system.
▪ For instance, your home folder is often something like .

• An absolute path is a fully-qualified name for a file that indicates
exactly where in the hierarchy it is located.
▪ Often organized by a human being in some logical way:

•

▪ There are many special paths. OS data structures go in:
•

▪ Devices go in:
•

▪ Use the Linux command to find out where your system binaries go!

31

Directories (Folders)

Spring 2019/2020

• A directory is a file that contains a
set of named links to other files.
▪ The earliest file systems did not even

have directories… just a bunch of files.

• Groups a set of files together under
a single name.
▪ Strictly hierarchical…

▪ Generally, a file can only be within one
directory.

▪ Although, a directory can also be within
a directory… creating a cascade.

root

home sys

hw1.doc hw2.doc main.c main.h

/root/home/main.c

32

Implementing Directories

Spring 2019/2020

• Directories can simply be text files, if you want!
▪ Every line contains a name and then a block address on disk for the inode.

• Obviously, there are a variety of ways to do this.
▪ Do you keep a sorted order to make searching directories easier?

▪ Can a directory refer to a file that is part of a different disk?
• A file from a completely different machine??

• If a directory is the only thing linking to a file, and removes that link,
what happens?
▪ How do you access a file if you cannot look up where it is?

▪ Deleting a file is really as simple as removing it from the directory.

▪ (And marking its blocks on disk free)

33

A directory

Spring 2019/2020

• A directory is a simple table,
implemented as a file, that maps
names to inodes.
▪ Each file system (NTFS, FAT, HFS,

EXT) will implement it slightly
differently.

• It may also contain metadata
about the file for each entry.
▪ Creation date, author, file size.

• How does a directory know its
parent?
▪ Special entry! “ ” points to parent.

▪ “ ” is quite literal.

Name Block Address Type

34

Heretic of the Day: Alternatives to Hierarchies

Spring 2019/2020

• Margo Seltzer: Hierarchical File-Systems are
Dead (HotOS ‘09)
▪ In this paper, she re-orients file systems around

human beings and our own needs.

• She asks the simple task: “Group these.”

Professor Margo Seltzer
University of British Columbia

https://www.seltzer.com/assets/publications/Hierarchical-File-Systems-Are-Dead.pdf

35

Aww… Human nature at work…

Spring 2019/2020

• How did you group them?

36

Great Expectations

Spring 2019/2020

• How can we expect anybody to use hierarchies?
▪ It does not seem to be how we actually think.

• Organize by description instead.
▪ No more placing files in directories.

▪ Tag files based on what they are.

▪ Search for files based on tag / keyword.

• “I want to see all images that are red.”
▪ “I want all images of squares…,” etc.

▪ “I want to list all music that is 135bpm.”

• Draws inspiration from the web: we often search by keywords.

37

Files with tags…

Spring 2019/2020

• We can attach tags to data files.

• Then, when I’m feeling down and
out, I can ask my computer:
“Hey, show me all the pictures
that are cute.”
▪ No longer looking into random

directories to find what I need.

cat.gif

cute

cat

food
Image by
Dimitri
Houtteman

https://pixabay.com/users/Dimhou-5987327/

38

POSIX: Contradicting the definition of “path”

Spring 2019/2020

• One piece of trouble with being heretical is that everybody asks you
“how will you implement this and get people to switch????”

• You don’t want to completely change C functions… so… let’s make use
of traditional ideas to implement tags.
▪ can still list all the files with both tags!

▪ can open a particular file.

▪ is, naturally but oddly, the same file.

• And you can also fit traditional POSIX paths to tags. Files in
“ ” can simply be files tagged with
“ ”
▪ We don’t do this. Why… don’t we just do this? … … Well, change is hard.

39

C File I/O Summary

Spring 2019/2020

• C Standard IO
▪

▪

Reads to the given buffer the given number of bytes from the file indicated by the file descriptor. Returns the
number of bytes read or 0 if the file reached its end. Negative on error.

▪

Similarly writes to the given buffer to the file indicated by the file descriptor.

▪

Modifies and returns the file position for the given file descriptor to the given offset from the reference point.

▪

Closes the file for this process. No subsequent action can be taken on this file. Returns negative on error.

▪

Opens the given file at the provided path with access depending on the provided flags. If the flags consist of a
string with “r” in it, it will be read-only. If it contains a “w” it will be writable. If it contains a “b” it will not be
interpreted as a text file, but as “binary” instead. If it is “w+”, it will completely overwrite the file. If it has an
“a”, it will automatically write to the end of the existing file.

40

C File I/O Summary

Spring 2019/2020

• UNIX System Calls
▪

▪

Reads to the given buffer the given number of bytes from the file indicated by the file descriptor. Returns the
number of bytes read or 0 if the file reached its end. Negative on error.

▪

Similarly writes to the given buffer to the file indicated by the file descriptor.

▪

Modifies and returns the file position for the given file descriptor to the given offset from the reference point.

▪

Closes the file for this process. No subsequent action can be taken on this file. Returns negative on error.

▪

▪

Opens the given file at the provided path with access depending on the provided flags. If the O_CREAT flag is
given, the file is created if it does not exist. If the O_TRUNC is passed and the file is writable, it will remove all
the data in the file after it opens. If O_RDONLY is specified, no writes can occur.

41

Summary

Spring 2019/2020

• Files are just binary blobs of information.
▪ Disambiguating that data requires a specification and consistency.

• Disks are physical and rely on nature, which is chaotic.
▪ We have strategies for encoding digital data on analog (magnetic) media.

▪ Physical addressing requires care in where blocks of data are stored.

• File systems are an opinionated space related to how humans organize
data on disk (and share/discover that data)
▪ Files are generally organized in trees, much like our virtual memory!

▪ Hierarchical file systems still dominate: directory structures.

▪ Other file systems are possible: relational searches and tags.

42

Distributed Filesystems and Storage

Spring 2019/2020

• Now… what happens when we have file systems that span machines?
▪ The power of networks and storage combined!

• What are some unique issues to files that span multiple systems?

• How can we create better methods of transmitting data between
machines?
▪ What if we break down the “client-server” model.

▪ What if files and data need not be in one particular place?

▪ How do we find information, then?

• Stay tuned!

