
Distributed

Spring 2019/2020

wilkie

Introduction to
Systems Software

Storage

18



Spring 2019/2020

Network File System
When a file wants to move up the career ladder, it’s gotta network.

2



3

Problem

• Storage is cheap.
▪ YES. This is a problem in a classical sense.

▪ People are storing more stuff and want very strong storage guarantees.

▪ Networked (web) applications are global and people want strong availability 
and stable speed/performance (wherever in the world they are.) Yikes!

• More data == Greater probability of failure
▪ We want consistency (correct, up-to-date data)

▪ We want availability (when we need it)

▪ We want partition tolerance (even in the presence of downtime)

▪ Oh. Hmm. Well, heck.

▪ That’s hard (technically impossible) so what can we do?



4

Lightning Round: Distributed Storage

• Network File System (NFS)
▪ We will gloss over details, here, but the 

papers are definitely worth a read.

▪ NFS invented the Virtual File System (VFS)

▪ Basically, though, it is an early attempt to 
investigate the 
trade-offs for client/server file consistency

Unreliable

Most Reliable??



5

NFS System Model

• Each client connects directly to the server. Files could be duplicated 
on client-side.

Client

Client

Client

Server



6

NFS Stateless Protocol

Set of common operations clients can issue: (where is ? ?)

Returns file handle for filename

Create a new file and return handle

Removes a file from a directory

Returns file attributes (stat)

Sets file attributes

Reads bytes from file

Writes bytes to file
Commands sent to the 

server. (one-way)



7

Statelessness (Toward Availability)

• NFS implemented an open (standard, well-known) and
stateless (all actions/commands are independent) protocol.

• The system call is an example of a stateful protocol.
▪ The system call looks up a file by a path.

▪ It gives you a file handle (or file descriptor) that represents that file.

▪ You give that file handle to read or write calls. (not the path)

▪ The file handle does not directly relate to the file. (A second call to gives a 
different file handle)

▪ If your machine loses power… the OS loses track of that handle…
• you’ll need to call again!



8

Statelessness (Toward Availability)

• Other stateless protocols: HTTP (but not FTP), IP (but not TCP), www

• So, in NFS, we don’t have an .

• Instead we have an idempotent function.
▪ Always gives us a predictable file handle. Even if the server crashes and 

reboots.

• Statelessness also benefits from idempotent read/write functions.
▪ Sending the same write command twice in a row shouldn’t matter.

• This means ambiguity of server crashes (did it do the thing I wanted?) 
doesn’t matter. Just send the command again. No big deal. (kinda)
▪ NFS’s way of handling duplicate requests. (when you see one command 

repeatedly sent… like when a client panics and thinks the server is dead.)

• Consider: What about mutual exclusion?? (file locking) Tricky!



9

Statelessness And Failure (NFS) [best]

A client issues a series of writes to a file located on a particular server.

Client Server

Local File Remote File



10

Server-side Writes Are Slow

Problem: Writes are really slow…
(Did the server crash?? Should I try again?? Delay… delay… delay)

Client Server

… 1 second …

… 2 seconds? ...

Time relates to the amount of data we want to write… is there a good block size?
1KiB? 4KiB? 1MiB? (bigger == slower, harsher failures; small == faster, but more messages)



11

Server-side Write Cache?

Solution: Cache writes and commit them when we have time.
(Client gets a respond much more quickly… but at what cost? There’s always a trade-off)

Client Server

400 milliseconds.

When should it write it back? Hmm. It is not that obvious.
(This is a particular tricky issue in distributed systems.)

Write Cache:
Need to write this
block at some point!

But what if… it doesn’t?



12

Write Cache Failure (NFS)

A server must commit changes to disk if it tells client it succeeded…
If it did fail, and restarted quickly, the client would never know!

Client Server

Local File Remote File (oops!)



13

Fault Tolerance

• So, we can allow failure, but only if we know if an operation succeeded. 
(we are assuming a strong “eventual consistency”)
▪ This is, that, within a reasonable amount of time, the system entirely agrees on 

what the state (files on disk) look like.
• This involves, in this case, writes… but those are really slow. Hmm.

• This is a form of fault tolerance.
▪ The idea that our system can recover or keep making progress of a subset of 

the system is unavailable or unstable.

• [a basic conforming implementation of] NFS makes a trade-off. 
It gives you distributed data that is reliably stored at the cost of slow 
writes.

• Can we speed that up?



14

Strategies

• Problem: Slow to send data since we must wait for it to be committed.
▪ Also, we may write (and overwrite) data repeatedly.

▪ How to mitigate performance?

• Possibility: Send writes in smaller chunks.
▪ Trade-offs: More messages to/from server.

• Possibility: We can cache writes at the client side.
▪ Trade-offs:

• Client side may crash.

• Accumulated writes may stall as we send more data at once.

• Overall difficulty in knowing when we writeback.

• Possibility: We mitigate likelihood of failure on server.
▪ Battery-backed cache, etc. Not perfect… but removes client burden.

▪ Make disks faster (Just make them as fast as RAM, right? NVRAM?) ☺

▪ Distribute writeback data to more than one server. (partitioning! Peer-to-peer!!)



Spring 2019/2020

File System Structure
Or lack thereof…

15



16

Directories and Hierarchies

• Hierarchical directories are based on older 
types of computers and operating systems 
designed around severe limitations.

• NFS (+VFS) mounts remote servers to 
directories.

• This is convenient (easy to understand and 
configure) for smaller storage networks.

• However, two different files may have the 
same name and exist on two different 
machines.
▪ How to differentiate? How to find what you 

want?



17

Reconsidering Normal (Name-Addressed)

• Currently, many everyday file systems haven’t changed much.
▪ They are name-addressed, that is, you look them up by their name.

• File lookups in hierarchies require many reads from disparate parts of 
disk as you open and read metadata for each directory.
▪ This can be slow. OSes have heavy complexity and caching for directories.

▪ Now, consider distributed file systems… if directories span machines!

• There are other approaches. Recall: Margo Seltzer in Hierarchical File 
Systems are Dead suggested a tag-based approach more in line with 
databases: offering indexing and search instead of file paths.



18

Content Addressing

• However, one approach “flips the script” and allows file lookups to be 
done on the data of the file.

• That seems counter-intuitive: looking up a file via a representation of 
its data. How do you know the data beforehand?

• With content-addressing, the file is stored with a name that is derived 
mathematically from its data as a hash. (MD5, SHA, etc)

• That yields many interesting properties we will take advantage of.



19

Hash Function Overview

Good Hash Functions:

• Are one-way (non-invertible)
▪ Cannot compute original 𝑥 from result of ℎ𝑎𝑠ℎ(𝑥)

• Are deterministic
▪ ℎ𝑎𝑠ℎ(𝑥) is equal to ℎ𝑎𝑠ℎ(𝑥) at any time on any other machine

• Are uniform
▪ Are hashes have equal probability. That is:

▪ The set 𝐻 defined by taking a random set and applying ℎ𝑎𝑠ℎ 𝑥 results in a 
normal distribution.

• Continuous
▪ Hashing two similar numbers should result in a dramatically different hash.

▪ That is: ℎ𝑎𝑠ℎ(𝑥) should be unpredictably distant from ℎ𝑎𝑠ℎ(𝑥 + 1)



20

Basic Hashing

• For simple integrity, we can simply hash the file.
𝑘 = ℎ𝑎𝑠ℎ(𝑓𝑖𝑙𝑒) is generated. Then key 𝑘 can be used to open the file.

• When distributing the file, one can know it got the file by simply 
hashing what it received.
▪ Since our hash function is deterministic the hash will be the same.

▪ If it isn’t, our file is corrupted.

• In digital archival circles, this is called fixity.
▪ The quality of data that denotes/verifies that it has not changed (remains fixed.)



21

Chunking (again… gross…)

• However, it would be nice to determine which part of the file was 
distributed incorrectly.
▪ Maybe we can ask a different source for just that part.

• Hmm… that’s an idea! (we’ll get there)

• Dividing up the file is called chunking, and there are things to consider: 
(trade-offs!)
▪ How big are the chunks… the more chunks, the more hashes; the more 

metadata!

▪ Of course, the more chunks, the smaller the chunk; therefore, the less window 
for detecting corruption!



22

Chunking

• Take a file, divide it into chunks, hash each chunk.

vacation_video.mov

B C D E F G HA



23

E

Distribution (Detecting Failure)

• Client requests the hashes given. But receives chunks with hashes:

vacation_video.mov

B C D F G HA



24

Merkle Tree/DAG

We can organize a file such that it can be referred to by a single hash, 
but also be divided up into more                 easily shared chunks.

vacation_video.mov

The hash of each node is the hash 
of the hashes it points to

𝑁0 = ℎ𝑎𝑠ℎ(𝐴 + 𝐵)

𝑁4 = ℎ𝑎𝑠ℎ(𝑁0 + 𝑁1)

𝑁2 = ℎ𝑎𝑠ℎ(𝐸 + 𝐹)

𝑁3 = ℎ𝑎𝑠ℎ(𝐺 + 𝐻)

N0

B C D E F G H

𝑁6 = ℎ𝑎𝑠ℎ(𝑁4 + 𝑁5)

𝑁5 = ℎ𝑎𝑠ℎ(𝑁2 + 𝑁3)

𝑁1 = ℎ𝑎𝑠ℎ(𝐶 + 𝐷)

N1 N2 N3

N5N4

N6

A



25

Merkle-based Deduplication

• Updating a chunk ripples.

• But leaves
intact
parts
alone!

vacation_video.mov

N0

B C D R F G H

N1 N7 N3

N8N4

N9

A



26

Deduplication

• Both versions of the
file can co-exist
without
duplicating
their
content.

vacation_video.mov (v2)

N0

B C D R F G H

N1 N7 N3

N8N4

N9

A

N6

N5

N2

E

vacation_video.mov (v1)



27

Distribution

• I can ask a storage server 
for the file at that hash.

• It will give me the sub 
hashes.

• At each step, I can verify 
the information by hashing 
what I downloaded!

D’s File Data

{N4, N5}

{N0, N1}

{C, D}



28

Distribution

• Nothing is stopping 
me from asking 
multiple servers.

• But how do I know 
which servers have 
which chunk?? Hmm.

{N4, N5}

{N0, N1}

{C, D}

D’s File DataC’s File Data } Concurrently gather
two chunks at once!



Spring 2019/2020

Peer-to-peer Systems
Let me… help you… download that new movie.

29



30

BitTorrent

• A basic peer-to-peer system based on block 
swapping.
▪ These days built on top of Distributed Hash Tables 

(DHTs)

• Known in non-technical circles for its use 
within software piracy.
▪ But it, or something similar, is used often!

▪ Blizzard uses it for game download/WoW updates.

▪ Downloading Linux/large software distributions.

▪ AT&T said in 2015 that BitTorrent represented 
around 20% of total broadband bandwidth

• I’m actually a bit skeptical.

https://thestack.com/world/2015/02/19/att-patents-system-to-fast-lane-bittorrent-traffic/


31

BitTorrent System Model

Spring 2019/2020

When a file is requested, a well-known node yields a peer list.

Our node serves as both client and server. (As opposed to unidirectional 
NFS)

A

B

C

main.c

{A, B, C}

“Tracker”

D
Adds “D” to the list.

Client/Server

Possibly: Gossip
to other nodes.

Possibly: Gossip
about D to other

nodes downloading
this file.



32

Block Sharing

Spring 2019/2020

• Files are divided into chunks (blocks) and
traded among the different peers.

• As your local machine gathers
blocks, those are available
for other peers, who will
ask you for them.

• You can concurrently download
parts of files from different sources.

• Peers can leave and join this network at any time.

Client/Server



33

Heuristics for Fairness

Spring 2019/2020

• How to choose who gets a block? (No right/obvious answer)
▪ This is two-sided. How can you trust a server to give you the right thing?

▪ Some peers are faster/slower than others.

▪ In an open system: Some don’t play fair. They take but never give back.

• You could prioritize older nodes.
▪ They are less likely to suddenly disappear.

▪ They are more likely to cooperate.

▪ What if everybody did this… hmm… old nodes shunning young nodes…

• You can only give if the other node gives you a block you need.
▪ Fair Block/Bit-swapping. Works as long as you have some data.

▪ Obviously punishes first-timers (who don’t have any data to give)

▪ Incentivizes longevity with respect to cooperation.

(The Millennial Struggle, am I right?)



34

Centralization Problems

Spring 2019/2020

• “Tracker” based solution introduces unreliable centralization.

• Getting rid of that (decentralized tracking) means:
▪ Organizing nodes such that it is easy to find data.

▪ Yet, also, not requiring knowledge about where that data is.

▪ And therefore, allowing data to move (migrate) as it sees fit.

• Many possible solutions. Most are VERY interesting and some are 
slightly counter-intuitive (hence interesting!)



35

Distributed Hash Tables (DHT)

Spring 2019/2020

• A distributed system devoted to decentralized key/value storage 
across a (presumably large or global) network.

• These are “tracker”-less. They are built to not require a centralized 
database matching files against peers who have them.

• Early DHTs were motivated by peer-to-peer networks.
▪ Early systems (around 2001): Chord, Pastry, Tapestry

▪ All building off one another.



36

Distributed Hash Tables: Basics

Spring 2019/2020

• Files are content-addressed and stored by their hash (key).

• Fulfills one simple function:      value = 𝑙𝑜𝑜𝑘𝑢𝑝(𝑘𝑒𝑦)

• However, the value could be anywhere! IN THE WORLD. Hmm.

• Mainly: find a way to relate the key to the location of the server that 
holds the value.

• The goal is at 𝑂 log 𝑁 queries to find data.
▪ Size of your network can increase exponentially as lookup cost increases 

linearly. (Good if you want to scale to millions of nodes)



37

The Chord DHT

Spring 2019/2020

• Peers are given an ID as a hash of their IP 
address. (unique, uniform)

• Such nodes maintain information about 
files that have hashes that resemble their 
IDs. (Distance can be the difference: A-B)

• Nodes also store information about 
neighbors of successive distances. (very 
near, near, far, very far… etc)

• Organizes metadata across the network to 
reduce the problem to a binary search.
▪ Therefore needs to contact O(log N) servers.

• To find a file, contact the server with an 
ID equal or slightly less than the file hash.
▪ They will then reroute to their neighbors. 

Repeat.

16 Node Network
(image via Wikipedia)



38

The Chord System Model

Spring 2019/2020

• Nodes are logically organized into a 
ring formation sorted by their ID (𝑛).
▪ IDs increase as one moves clockwise.
▪ IDs should have the same bit-width as 

the keys.
▪ For our purposes, keys are file hashes.

• Nodes store information about 
neighbors with IDs relative to their 
own in the form: (𝑚 is key size in 
bits)
▪ 𝑛 + 2𝑖 mod 2𝑚 where 0 ≤ 𝑖 < 𝑚

• Imagine a ring with millions of nodes.
▪ 2𝑖 diverges quickly!

ID near 𝑛 + 24

ID = 𝑛



39

Chord: Lookup

Spring 2019/2020

• Notice how locality is encoded.
▪ Nodes know at most log 𝑚 nodes.
▪ Nodes know more “nearby” nodes.

• When performing 𝑙𝑜𝑜𝑘𝑢𝑝 𝑘𝑒𝑦 , the 
node only needs to find the node 
closest to that key and forward the 
request.

• Let’s say 𝑘𝑒𝑦 is far away from us.
▪ We will ask the node farthest from us 

(with the “nearest” ID less than the key)

• This node, as before, also knows about 
neighbors in a similar fashion.
▪ Notice it’s own locality! It looks up the 

same key. Binary search… 𝑂(log 𝑁) msgs.
𝑛 + 24



40

Chord: Upkeep, Join

Spring 2019/2020

• Periodically, the node must check to 
ensure it’s perception of the world 
(the ring structure) is accurate.

• It can ask its neighbor who their 
neighbor is.
▪ If it reports a node whose ID is closer to 

𝑛 + 2𝑖 than they are… use them as that 
neighbor instead.

• This is done when a node enters the 
system as well.
▪ All new neighbors receive information 

about, and responsibility for, nearby 
keys.

Lookup our node ID to find neighbors
Tell those nodes we exist

Upkeep will stabilize other nodes

Join:



41

Problems with Chord

Spring 2019/2020

• Maintaining the invariants of the 
distributed data structure is hard.
▪ That is, the ring shape.

• When new nodes enter, they 
dangle off of the ring until nodes 
see them.

• That means, it doesn’t handle 
short-lived nodes very well.
▪ Which can be very common for 

systems with millions of nodes!

Stabilization isn’t immediate for new nodes

Older nodes maintain a stable ring



42

Kademlia (Pseudo Geography)

• Randomly assign yourself a node ID ☺

• Measure distance using XOR: 𝑑 𝑁1, 𝑁2 = 𝑁1 ⊕ 𝑁2 (Interesting…)
▪ Unlike arithmetic difference (A – B) no two nodes can have the same distance 

to any key.

▪ XOR has the same properties as Euclidian distance, but cheaper:
• Identity: 𝑑 𝑁1, 𝑁1 = 𝑁1 ⊕ 𝑁1 = 0

• Symmetry: 𝑑 𝑁1, 𝑁2 = 𝑑 𝑁2, 𝑁1 = 𝑁1 ⊕ 𝑁2 = 𝑁2 ⊕ 𝑁1

• Triangle Inequality: 𝑑 𝑁1, 𝑁2 ≤ 𝑑 𝑁1, 𝑁3 + 𝑑 𝑁2, 𝑁3

𝑁1 ⊕ 𝑁2 ≤ 𝑁1 ⊕ 𝑁3 + 𝑁2 ⊕ 𝑁3 … Confounding, but true.

• Once again, we store keys near similar IDs.
▪This time, we minimize the distance:

• Store key 𝑘 at any node 𝑛 that minimizes 𝑑 𝑛, 𝑘



43

Kademlia Network Topology

• Two “neighbors” may be entirely across the planet! (or right next door)

00110

00111



44

Kademlia Network Topology

• Each node knows about nodes that 
have a distance successively larger 
than it.
▪ Recall XOR is distance, so largest 

distance occurs when MSB is different.

• It maintains buckets of nodes with 
IDs that share a prefix of 𝑘 bits 
(matching MSBs)
▪ There are a certain number of entries in 

each bucket. (not exhaustive)

▪ The number of entries relates to the 
replication amount.

• The overall network is a trie.
▪ The buckets are subtrees of that trie.

1-bit 2-bit 3-bit 4-bit

Routing Table k-buckets

0-bit

Note: 0-bit list contains half of the overall network!

Us: 00110

“Them”



45

Kademlia Routing (bucket visualization)

1-bit

3-bit

2-bit

0-bit

“Close”

“Far Away”



46

Kademlia Routing Algorithm

• Ask the nodes we know that are 
“close” to 𝑘 to tell as about nodes 
that are “close” to 𝑘

• Repeat by asking those nodes which 
nodes are “close” to 𝑘 until we get a 
set that say “I know 𝑘!!”

• Because of our k-bucket scheme, 
each step we will look at nodes that 
share an increasing number of bits 
with 𝑘.
▪ And because of our binary tree, we 

essentially divide our search space in half.

▪ Search: 𝑂(log 𝑁) queries.

1-bit 2-bit 3-bit 4-bit

Routing Table k-buckets

0-bit

Note: 0-bit list contains half of the overall network!

Us: 00110

“Them”



47

Kademlia Routing Algorithm

• Finding 𝑘 = 00111 from node 00110.
▪ Easy! Starts with a similar sequence.

▪ It’s hopefully at our own node, node 
00111, or maybe node 00100…

• Finding 𝑘 = 11011 from 00110:
▪ Worst case! No matching prefix!

▪ Ask several nodes with IDs starting with 1.
• This is, at worst, half of our network… so we 

have to rely on the algorithm to narrow it 
down.

• It hopefully returns nodes that start with 11 
or better. (which eliminates another half of 
our network from consideration)

▪ Repeat until a node knows about 𝑘.

1-bit 2-bit 3-bit 4-bit

Routing Table k-buckets

0-bit

Note: 0-bit list contains half of the overall network!

Us: 00110

“Them”



48

Kademlia: Node Introduction

• Contrary to Chord, XOR distance means nodes know exactly where 
they fit.
▪ How “far away” you are from any key doesn’t depend on the other nodes in the 

system. (It’s always your ID ⊕ 𝑘𝑒𝑦)

• Regardless the join process is more or less the same:
▪ Ask an existing node to find your ID, it returns a list of your neighbors.

▪ Tell your neighbors you exist and get their knowledge of the world
• That is, replicate their keys and k-buckets.

• As nodes contact you, record their ID in the appropriate bucket.
▪ When do you replace?? Which entries do you replace?? Hmm.



49

Applications

• IPFS (InterPlanetary File System)
▪ Divides files into hashes resembling a Merkle DAG.

▪ Uses a variant of Kademlia to look up each hash and find mirrors.

▪ Reconstructs files on the client-side by downloading from peers.

▪ Some very shaky stuff about using a blockchain (distributed ledger) to do name 
resolution.

▪ Is this the next big thing??? (probably not, but it is cool ☺)



50

Summary

Spring 2019/2020

• Here we look at a variety of distributed systems issues.

• I hope you are now excited at the potential of creating such systems!
▪ The web is a giant distributed system… many of these issues come into play even

in the simplest of websites.

▪ Watch my friend Mikaela Patella’s video “Web Development is Distributed 
Systems Programming”

• We have seen how protocol design needs to accommodate failure.

• We investigated ways of detecting forms of data failure and fixity.

• And how designs need to account of distance and lookup…
▪ In the presence of possibly millions or billions of systems!!

• What’s next? Well, take the Operating Systems course nearest you!

https://www.youtube.com/watch?v=KxMK2AklpNY

